Unable to write in log file ../../bases/logs/gimorg/logerror.txt Search | WHO COVID-19 Research Database
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.03.21263103


Objectives This study aims to estimate the prevalence and longevity of detectable SARS-CoV-2 antibodies as well as memory cells T and B after recovery. In addition, the prevalence of COVID-19 reinfection, and the preventive efficacy of previous infection with SARS-CoV-2 were investigated. Methods and analyses A synthesis of existing research was conducted. The Cochrane Library for COVID-19 resources, the China Academic Journals Full Text Database, PubMed, and Scopus as well as preprint servers were searched for studies conducted between 1 January 2020 to 1 April 2021. We included studies with the relevant outcomes of interest. All included studies were assessed for methodological quality and pooled estimates of relevant outcomes were obtained in a meta-analysis using a bias adjusted synthesis method. Proportions were synthesized with the Freeman-Tukey double arcsine transformation and binary outcomes using the odds ratio (OR). Heterogeneity between included studies was assessed using the I2 and Cochran’s Q statistics and publication bias was assessed using Doi plots. Results Fifty-four studies, from 18 countries, with around 12 000 000 individuals, followed up to 8 months after recovery were included. At 6-8 months after recovery, the prevalence of SARS-CoV-2 specific immunological memory remained high; IgG – 90.4% (95%CI 72.2-99.9, I 2 =89.0%, 5 studies), CD4+ - 91.7% (95%CI 78.2 – 97.1, one study), and memory B cells 80.6% (95%CI 65.0-90.2, one study) and the pooled prevalence of reinfection was 0.2% (95%CI 0.0 – 0.7, I 2 = 98.8, 9 studies). Individuals previously infected with SARS-CoV-2 had an 81% reduction in odds of a reinfection (OR 0.19, 95% CI 0.1 - 0.3, I 2 = 90.5%, 5 studies). Conclusion Around 90% of people previously infected with SARS-CoV-2 had evidence of immunological memory to SARS-CoV-2, which was sustained for at least 6-8 months after recovery, and had a low risk of reinfection. Registration PROSPERO: CRD42020201234 What is already known on this topic Individuals who recover from COVID-19 may have immunity against future infection but the proportion who develop immunity is uncertain. Further, there is uncertainty about the proportion of individuals who get reinfected with COVID-19. What this study adds Using data from 54 studies with follow up time up to 8 months after recovery, during the period February 2020-February 2021, we found that, post-COVID-19, up to 90% of individuals had antibodies and memory T and B cells against SARS-CoV-2. We also found a pooled prevalence of reinfection of 0.2%, and that infection conferred an 81% decrease in odds of reinfection with SARS-CoV-2, compared to unimmunized individuals without previous COVID-19. This review of 12 million individuals presents evidence that most individuals who recover from COVID-19 develop immunological memory to SARS-CoV-2, which was still detectable for up to 8 months. Further, reinfection after recovery from COVID-19 was rare during the first 8 months after recovery, with a prevalence below 1%, while prior infection confers protection with an odds ratio of 0.19 and a preventive efficacy of 80% at a baseline prevalence of 5% for COVID-19 in a community. Implications of all the available evidence Individuals with a history of COVID-19 infection have immunity against the disease for up to 8 months, although this period could be longer. These individuals could be prioritized last for COVID-19 vaccinations or considered for single dose vaccinations. Strengths This comprehensive review addresses key questions on prevalent immunological memory and risk of reinfection in individuals with prior confirmed COVID-19 using robust systematic review methods. Limitations Some of the included studies which examined prevalent immunological memory were small studies which were affected by loss to follow up. The review did not examine evidence for immunity against the new divergent variants, which may be more likely to have immune evasion behaviour and may present a higher risk of reinfection. Lastly, the review did not examine the effect of the severity of COVID-19 on both immunological memory and the risk of reinfection.

authorea preprints; 2021.
Preprint in English | PREPRINT-AUTHOREA PREPRINTS | ID: ppzbmed-10.22541.au.161918947.77588494.v2


Background: . This paper presents, for the first time, the Epidemic Volatility Index (EVI), a conceptually simple, early warning tool for emerging epidemic waves. Methods: . EVI is based on the volatility of the newly reported cases per unit of time, ideally per day, and issues an early warning when the rate of the volatility change exceeds a threshold. Results: . Results from the COVID-19 epidemic in Italy and New York are presented here, while daily updated predictions for all world countries and each of the United States are available online. Interpretation . EVI’s application to data from the current COVID-19 pandemic revealed a consistent and stable performance in terms of detecting oncoming waves. The application of EVI to other epidemics and syndromic surveillance tasks in combination with existing early warning systems will enhance our ability to act fast and optimize containment of outbreaks.

Encephalitis, Arbovirus , Syndrome , COVID-19