Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Add filters

Main subject
Document Type
Year range
J Clin Med ; 11(19)2022 Oct 09.
Article in English | MEDLINE | ID: covidwho-2066208


Myocardial injury (MI), defined by troponin elevation, has been associated with increased mortality and adverse outcomes in patients with coronavirus disease 2019 (COVID-19), but the role of this biomarker as a risk predictor remains unclear. Data from adult patients hospitalized with COVID-19 were recorded prospectively. A multiple logistic regression model was used to quantify associations of all variables with in-hospital mortality, including the calculation of odds ratios (ORs) and confidence intervals (CI). Troponin measurement was performed in 1476 of 4628 included patients, and MI was detected in 353 patients, with a prevalence of 23.9%; [95% CI, 21.8-26.1%]. The total in-hospital mortality rate was 10.9% [95% CI, 9.8-12.0%]. The mortality was much higher among patients with MI than among those without MI, with a prevalence of 22.7% [95% CI, 18.5-27.3%] vs. 5.5% [95% CI, 4.3-7.0%] and increased with each troponin level. After adjustment for age and comorbidities, the model revealed that the mortality risk was greater for patients with MI [OR = 2.99; 95% CI, 2.06-4.36%], and for those who did not undergo troponin measurement [OR = 2.2; 95% CI, 1.62-2.97%], compared to those without MI. Our data support the role of troponin as an important risk predictor for these patients, capable of discriminating between those with a low or increased mortality rate. In addition, our findings suggest that this biomarker has a remarkable negative predictive value in COVID-19.

J Clin Med ; 11(13)2022 Jun 27.
Article in English | MEDLINE | ID: covidwho-1911429


Cardiovascular comorbidities and immune-response dysregulation are associated with COVID-19 severity. We aimed to explore the key immune cell profile and understand its association with disease progression in 156 patients with hypertension that were hospitalized due to COVID-19. The primary outcome was progression to severe disease. The probability of progression to severe disease was estimated using a logistic regression model that included clinical variables and immune cell subsets associated with the primary outcome. Obesity; diabetes; oxygen saturation; lung involvement on computed tomography (CT) examination; the C-reactive protein concentration; total lymphocyte count; proportions of CD4+ and CD8+ T cells; CD4/CD8 ratio; CD8+ HLA-DR MFI; and CD8+ NKG2A MFI on admission were all associated with progression to severe COVID-19. This study demonstrated that increased CD8+ NKG2A MFI at hospital admission, in combination with some clinical variables, is associated with a high risk of COVID-19 progression in hypertensive patients. These findings reinforce the hypothesis of the functional exhaustion of T cells with the increased expression of NKG2A in patients with severe COVID-19, elucidating how severe acute respiratory syndrome coronavirus 2 infection may break down the innate antiviral immune response at an early stage of the disease, with future potential therapeutic implications.

Front Med (Lausanne) ; 9: 844728, 2022.
Article in English | MEDLINE | ID: covidwho-1834450


Background: Nitazoxanide exerts antiviral activity in vitro and in vivo and anti-inflammatory effects, but its impact on patients hospitalized with COVID-19 pneumonia is uncertain. Methods: A multicentre, randomized, double-blind, placebo-controlled trial was conducted in 19 hospitals in Brazil. Hospitalized adult patients requiring supplemental oxygen, with COVID-19 symptoms and a chest computed tomography scan suggestive of viral pneumonia or positive RT-PCR test for COVID-19 were enrolled. Patients were randomized 1:1 to receive nitazoxanide (500 mg) or placebo, 3 times daily, for 5 days, and were followed for 14 days. The primary outcome was intensive care unit admission due to the need for invasive mechanical ventilation. Secondary outcomes included clinical improvement, hospital discharge, oxygen requirements, death, and adverse events within 14 days. Results: Of the 498 patients, 405 (202 in the nitazoxanide group and 203 in the placebo group) were included in the analyses. Admission to the intensive care unit did not differ between the groups (hazard ratio [95% confidence interval], 0.68 [0.38-1.20], p = 0.179); death rates also did not differ. Nitazoxanide improved the clinical outcome (2.75 [2.21-3.43], p < 0.0001), time to hospital discharge (1.37 [1.11-1.71], p = 0.005), and reduced oxygen requirements (0.77 [0.64-0.94], p = 0.011). C-reactive protein, D-dimer, and ferritin levels were lower in the nitazoxanide group than the placebo group on day 7. No serious adverse events were observed. Conclusions: Nitazoxanide, compared with placebo, did not prevent admission to the intensive care unit for patients hospitalized with COVID-19 pneumonia. Clinical Trial Registration: Brazilian Registry of Clinical Trials (REBEC) RBR88bs9x;, NCT04561219.

Eur Respir J ; 58(1)2021 07.
Article in English | MEDLINE | ID: covidwho-999707


BACKGROUND: Nitazoxanide is widely available and exerts broad-spectrum antiviral activity in vitro. However, there is no evidence of its impact on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: In a multicentre, randomised, double-blind, placebo-controlled trial, adult patients presenting up to 3 days after onset of coronavirus disease 2019 (COVID-19) symptoms (dry cough, fever and/or fatigue) were enrolled. After confirmation of SARS-CoV-2 infection using reverse transcriptase PCR on a nasopharyngeal swab, patients were randomised 1:1 to receive either nitazoxanide (500 mg) or placebo, three times daily, for 5 days. The primary outcome was complete resolution of symptoms. Secondary outcomes were viral load, laboratory tests, serum biomarkers of inflammation and hospitalisation rate. Adverse events were also assessed. RESULTS: From June 8 to August 20, 2020, 1575 patients were screened. Of these, 392 (198 placebo, 194 nitazoxanide) were analysed. Median (interquartile range) time from symptom onset to first dose of study drug was 5 (4-5) days. At the 5-day study visit, symptom resolution did not differ between the nitazoxanide and placebo arms. Swabs collected were negative for SARS-CoV-2 in 29.9% of patients in the nitazoxanide arm versus 18.2% in the placebo arm (p=0.009). Viral load was reduced after nitazoxanide compared to placebo (p=0.006). The percentage viral load reduction from onset to end of therapy was higher with nitazoxanide (55%) than placebo (45%) (p=0.013). Other secondary outcomes were not significantly different. No serious adverse events were observed. CONCLUSIONS: In patients with mild COVID-19, symptom resolution did not differ between nitazoxanide and placebo groups after 5 days of therapy. However, early nitazoxanide therapy was safe and reduced viral load significantly.

COVID-19 , Adult , Humans , Nitro Compounds , SARS-CoV-2 , Thiazoles , Treatment Outcome