ABSTRACT
OBJECTIVE: The aim of this study was to evaluate the management mode for the prevention and control of coronavirus disease 2019 (COVID-19) transmission used at a general hospital in Shenzhen, China, with the aim to maintain the normal operation of the hospital. METHODS: From January 2, 2020, to April 23, 2020, Hong Kong-Shenzhen Hospital, a tertiary hospital in Shenzhen, has operated a special response protocol named comprehensive pandemic prevention and control model, which mainly includes 6 aspects: (1) human resource management; (2) equipment management; (3) logistics management; (4) cleaning, disinfection, and process reengineering; (5) environment layout; (6) and training and assessment. The detail of every aspect was described, and its efficiency was evaluated. RESULTS: A total of 198,802 patients were received. Of those, 10,821 were hospitalized; 26,767 were received by the emergency department and fever clinics; 288 patients were admitted for observation with fever; and 324 were admitted as suspected cases for isolation. Under the protocol of comprehensive pandemic prevention and control model, no case of hospital-acquired infection with COVID-19 occurred among the inpatients or staff. CONCLUSION: The present comprehensive response model may be useful in large public health emergencies to ensure appropriate management and protect the health and life of individuals.
ABSTRACT
For coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 15-30% of patients are likely to develop COVID-19-related acute respiratory distress syndrome (ARDS). There are still few effective and well-understood therapies available. Novel variants and short-lasting immunity are posing challenges to vaccine efficacy, so finding antiviral and antiinflammatory treatments remains crucial. Here, tripterin (TP), a traditional Chinese medicine, was encapsulated into liposome (TP lipo) to investigate its antiviral and antiinflammatory effects in severe COVID-19. By using two severe COVID-19 models in human ACE2-transgenic (hACE2) mice, an analysis of TP lipo's effects on pulmonary immune responses was conducted. Pulmonary pathological alterations and viral burden were reduced by TP lipo treatment. TP lipo inhibits SARS-CoV-2 replication and hyperinflammation in infected cells and mice, two crucial events in severe COVID-19 pathophysiology, it is a promising drug candidate to treat SARS-CoV-2-induced ARDS.
Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Animals , Mice , SARS-CoV-2 , Liposomes , COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Respiratory Distress Syndrome/drug therapyABSTRACT
The molecular detection of SARS-CoV-2 is extremely important for the discovery and prevention of pandemic dissemination. Because SARS-CoV-2 is not always present in the samples that can be collected, the sample chosen for testing has inevitably become the key to the SARS-CoV-2 positive cases screening. The nucleotide amplification strategy mainly includes Q-PCR assays and isothermal amplification assays. The Q-PCR assay is the most used SARS-CoV-2 detection assay. Due to heavy expenditures and other drawbacks, isothermal amplification cannot replace the dominant position of the Q-PCR assay. The antibody-based detection combined with Q-PCR can help to find more positive cases than only using nucleotide amplification-based assays. Pooled testing based on Q-PCR significantly increases efficiency and reduces the cost of massive-scale screening. The endless stream of variants emerging across the world poses a great challenge to SARS-CoV-2 molecular detection. The multi-target assays and several other strategies have proved to be efficient in the detection of mutated SARS-CoV-2 variants. Further research work should concentrate on: (1) identifying more ideal sample plucking strategies, (2) ameliorating the Q-PCR primer and probes targeted toward mutated SARS-CoV-2 variants, (3) exploring more economical and precise isothermal amplification assays, and (4) developing more advanced strategies for antibody/antigen or engineered antibodies to ameliorate the antibody/antigen-based strategy.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Polymerase Chain Reaction , NucleotidesABSTRACT
BACKGROUND: Coronavirus disease 2019 (COVID-19) is a global pandemic. Hydroxychloroquine (HCQ)-associated cardiovascular adverse events (CVAEs) have been increasingly reported. AIM: This study aimed to present an observational, retrospective, and comprehensive pharmacovigilance analysis of CVAE associated with HCQ in patients with and without COVID-19 using the US Food and Drug Administration Adverse Events Reporting System (FAERS) data from January 2020 to December 2020. METHOD: We identified 3302 adverse event reports from the FAERS database in the year 2020 and divided them into COVID-19 and non-COVID-19 groups, respectively. Then we analyzed whether there were differences in CVAEs between the two groups. RESULTS: We found that CVAE was higher in cases with COVID-19 compared to those without COVID-19, odds ratio (OR) of 1.26 and a 95% confidence interval (95% CI) of 1.02-1.54. Cases with COVID-19 treated with HCQ exhibited relatively higher proportions of torsade de points (TdP) and QT prolongation (OR 3.10, 95% CI 2.24-4.30), shock-associated TdP (OR 2.93, 95% CI 2.13-4.04), cardiac arrhythmias (OR 2.07, 95% CI 1.60-2.69), cardiac arrhythmia terms (including bradyarrhythmias and tachyarrhythmias) (OR 2.15, 95% CI 1.65-2.80), bradyarrhythmias (including conduction defects and disorders of sinus node function) (OR 2.56, 95% CI 1.86-3.54), and conduction defects (OR 2.56, 95% CI 1.86-3.54). CONCLUSION: Our retrospective observational analysis suggested that the proportion of CVAE associated with HCQ, especially TdP and QT prolongation, was higher in patients with COVID-19. Understanding the effects of COVID-19 on the cardiovascular system is essential to providing comprehensive medical care to patients receiving HCQ treatment.
Subject(s)
COVID-19 Drug Treatment , COVID-19 , Cardiovascular System , Long QT Syndrome , Humans , Hydroxychloroquine/adverse effects , COVID-19/epidemiology , Pharmacovigilance , Retrospective Studies , Bradycardia/chemically induced , Long QT Syndrome/chemically induced , Long QT Syndrome/epidemiology , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/epidemiology , Arrhythmias, Cardiac/drug therapy , Cardiac Conduction System Disease/chemically induced , Cardiac Conduction System Disease/drug therapy , DNA-Binding ProteinsABSTRACT
BACKGROUND: Real-world evidence on inactivated COVID-19 vaccines against the highly transmissible B.1.617.2 (Delta) variant of SARS-CoV-2 is limited, leaving an important gap in the evidence base about inactivated COVID-19 vaccines for use by immunization programs. OBJECTIVE: To estimate inactivated vaccine effectiveness (VE) against the B.1.617.2 variant. DESIGN: Retrospective cohort study. SETTING: The study was based on the first outbreak of the B.1.617.2 variant in mainland China that was discovered and traced in Guangdong in May and June 2021. PARTICIPANTS: 10 805 adult case patients with laboratory-confirmed infection and close contacts. MEASUREMENTS: Participants were categorized as unvaccinated, partially vaccinated (1 dose), and fully vaccinated (2 doses). We estimated VE against the primary outcome of pneumonia and the secondary outcomes of infections, symptomatic infections, and severe or critical illness associated with the B.1.617.2 variant. RESULTS: Results are reported in the order of outcome severity. Of 10 805 participants, 1.3% contracted infections, 1.2% developed symptomatic infections, 1.1% had pneumonia, and 0.2% had severe or critical illness. The adjusted VEs of full vaccination were 51.8% (95% CI, 20.3% to 83.2%) against infection, 60.4% (CI, 31.8% to 88.9%) against symptomatic infection, and 78.4% (CI, 56.9% to 99.9%) against pneumonia. Also, full vaccination was 100% (CI, 98.4% to 100.0%) effective against severe or critical illness. By contrast, the adjusted VEs of partial vaccination against infection, symptomatic infection, and pneumonia were 10.7% (CI, -41.2% to 62.6%), 6.8% (CI, -47.4% to 61.0%), and 11.6% (CI, -42.6% to 65.8%), respectively. LIMITATION: Observational study with possible unmeasured confounders; insufficient data to do reliable subgroup analyses by age and vaccine brand. CONCLUSION: Full vaccination with inactivated vaccines is effective against the B.1.617.2 variant. Effort should be made to ensure full vaccination of target populations. PRIMARY FUNDING SOURCE: National Natural Science Foundation of China and Key-Area Research and Development Program of Guangdong Province.
Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , COVID-19/epidemiology , COVID-19/prevention & control , Cohort Studies , Critical Illness , Humans , Retrospective Studies , SARS-CoV-2/genetics , Vaccines, InactivatedABSTRACT
Neutrophil extracellular traps (NETs) can capture and kill viruses, such as influenza viruses, human immunodeficiency virus (HIV), and respiratory syncytial virus (RSV), thus contributing to host defense. Contrary to our expectation, we show here that the histones released by NETosis enhance the infectivity of SARS-CoV-2, as found by using live SARS-CoV-2 and two pseudovirus systems as well as a mouse model. The histone H3 or H4 selectively binds to subunit 2 of the spike (S) protein, as shown by a biochemical binding assay, surface plasmon resonance and binding energy calculation as well as the construction of a mutant S protein by replacing four acidic amino acids. Sialic acid on the host cell surface is the key molecule to which histones bridge subunit 2 of the S protein. Moreover, histones enhance cell-cell fusion. Finally, treatment with an inhibitor of NETosis, histone H3 or H4, or sialic acid notably affected the levels of sgRNA copies and the number of apoptotic cells in a mouse model. These findings suggest that SARS-CoV-2 could hijack histones from neutrophil NETosis to promote its host cell attachment and entry process and may be important in exploring pathogenesis and possible strategies to develop new effective therapies for COVID-19.
Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Histones , Mice , N-Acetylneuraminic Acid , Protein Subunits/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Virus InternalizationABSTRACT
Acute kidney injury (AKI) is a common complication among patients with the novel coronavirus (COVID-19). COVID-19 along with AKI usually resulted in a poor prognosis for those affected. Remdesivir is a novel antiviral drug that was urgently approved for the treatment of COVID-19. In the current study, safety data of remdesivir were limited. We gathered information on COVID-19 cases in patients with adverse events that were reported to the U.S. Food and Drug Administration (US FDA) Adverse Event Reporting System (FAERS) database. We employed the reporting odds ratio (ROR) method to perform disproportionality analysis. Finally, we identified 12,869 COVID-19 cases. A total of 3,991 of these cases reported remdesivir as a primary suspected drug, while 8,878 cases were treated with other drugs. More AKI events occurred in cases of male patients and those above the age of 65 years. We detected a significant association between remdesivir and AKI: ROR = 2.81, 95% CI (2.48, 3.18). The association was stronger after the propensity score matching ROR = 3.85, 95% CI (3.11, 4.78). The mean time to AKI event onset was 4.91 ± 7.25 days in COVID-19 cases with remdesivir therapy. The fatality proportion was 36.45% in AKI cases with remdesivir treatment. This pharmacovigilance study identified a significant association between AKI events and remdesivir treatment in COVID-19 patients by mining FAERS real-world big data. Although causality was not confirmed, the association between remdesivir and AKI should not be ignored, especially in the older, male COVID-19 inpatients.
ABSTRACT
The SARS-CoV-2 Delta variant has spread rapidly worldwide. To provide data on its virological profile, we here report the first local transmission of Delta in mainland China. All 167 infections could be traced back to the first index case. Daily sequential PCR testing of quarantined individuals indicated that the viral loads of Delta infections, when they first become PCR-positive, were on average ~1000 times greater compared to lineage A/B infections during the first epidemic wave in China in early 2020, suggesting potentially faster viral replication and greater infectiousness of Delta during early infection. The estimated transmission bottleneck size of the Delta variant was generally narrow, with 1-3 virions in 29 donor-recipient transmission pairs. However, the transmission of minor iSNVs resulted in at least 3 of the 34 substitutions that were identified in the outbreak, highlighting the contribution of intra-host variants to population-level viral diversity during rapid spread.
Subject(s)
COVID-19/transmission , Contact Tracing/methods , Disease Outbreaks/prevention & control , SARS-CoV-2/isolation & purification , Animals , COVID-19/epidemiology , COVID-19/virology , Chlorocebus aethiops , Humans , RNA-Seq/methods , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Time Factors , Vero Cells , Viral Load/genetics , Viral Load/physiology , Virus Replication/genetics , Virus Replication/physiology , Virus Shedding/genetics , Virus Shedding/physiologyABSTRACT
The novel coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide, and the WHO declared it a pandemic on March 11, 2020. Clinical characteristics and epidemiology features of patients infected with SARS-CoV-2 have been explored in the previous study. However, little is known about the combinative association of liver dysfunction and abnormal interleukins (ILs) in severe patients with COVID-19. This study was designed to estimate whether liver dysfunction and abnormal ILs could predict the severity of COVID-19. This study integrated liver function data and ILs data in patients with COVID-19 and found that liver injury and two ILs, interleukin-2 receptor (IL-2R) and interleukin-6 (IL-6), were closely related to the prognosis of patients with COVID-19. This study may give more exact information to clinicians about the prognosis of patients with COVID-19. In addition, this correlational study between liver disorder and ILs may provide a new vision to diagnosis and treatment in patients.
Subject(s)
COVID-19 , Interleukin-6 , Liver/pathology , Receptors, Interleukin-2/blood , COVID-19/diagnosis , Humans , Interleukin-6/blood , PandemicsABSTRACT
Host cellular receptors play key roles in the determination of virus tropism and pathogenesis. However, little is known about SARS-CoV-2 host receptors with the exception of ACE2. Furthermore, ACE2 alone cannot explain the multi-organ tropism of SARS-CoV-2 nor the clinical differences between SARS-CoV-2 and SARS-CoV, suggesting the involvement of other receptor(s). Here, we performed genomic receptor profiling to screen 5054 human membrane proteins individually for interaction with the SARS-CoV-2 capsid spike (S) protein. Twelve proteins, including ACE2, ASGR1, and KREMEN1, were identified with diverse S-binding affinities and patterns. ASGR1 or KREMEN1 is sufficient for the entry of SARS-CoV-2 but not SARS-CoV in vitro and in vivo. SARS-CoV-2 utilizes distinct ACE2/ASGR1/KREMEN1 (ASK) receptor combinations to enter different cell types, and the expression of ASK together displays a markedly stronger correlation with virus susceptibility than that of any individual receptor at both the cell and tissue levels. The cocktail of ASK-related neutralizing antibodies provides the most substantial blockage of SARS-CoV-2 infection in human lung organoids when compared to individual antibodies. Our study revealed an interacting host receptome of SARS-CoV-2, and identified ASGR1 and KREMEN1 as alternative functional receptors that play essential roles in ACE2-independent virus entry, providing insight into SARS-CoV-2 tropism and pathogenesis, as well as a community resource and potential therapeutic strategies for further COVID-19 investigations.
Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Asialoglycoprotein Receptor , Community Resources , Humans , Membrane Proteins , Protein Binding , Receptors, Virus/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Virus InternalizationABSTRACT
Objective: The outbreak of Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) threatens a surging number of community groups within society, including women actively breastfeeding. Breastfeeding involves intimate behaviors, a major transmission route of SARS-CoV-2, and is integral to the close mother-baby relationship highly correlated with maternal psychological status. Materials and Methods: Twenty-three pregnant women and puerperae with either confirmed or suspected diagnoses of COVID-19 were enrolled in the study. The clinical characteristics and outcomes of the mothers and neonates were recorded. The presence of SARS-CoV-2, IgG, and IgM in breast milk, maternal blood, and infant blood, together with feeding patterns, was assessed within 1 month after delivery. Feeding patterns and maternal psychological status were also recorded in the second follow-up. Results: No positive detection of SARS-CoV-2 was found in neonates. All breast milk samples were negative for the detection of SARS-CoV-2. The presence of IgM for SARS-CoV-2 in breast milk was correlated with IgM presence in the maternal blood. The results of IgG detection for SARS-CoV-2 were negative in all breast milk samples. All infants were in a healthy condition in two follow-ups, and antibody tests for SARS-CoV-2 were negative. The rate of breast milk feeding increased during two follow-ups. All mothers receiving a second follow-up experienced negative psychological factors and status. Conclusions: Our findings support the feasibility of breastfeeding in women infected with SARS-CoV-2. The additional negative psychological status of mothers due to COVID-19 should also be considered during the puerperium period.
Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Breast Feeding , Female , Follow-Up Studies , Humans , Infant , Infant, Newborn , Infectious Disease Transmission, Vertical , Mothers , Pandemics , Pregnancy , Pregnancy Complications, Infectious/epidemiology , SARS-CoV-2ABSTRACT
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a respiratory disease called coronavirus disease 2019 (COVID-19), the spread of which has led to a pandemic. An effective preventive vaccine against this virus is urgently needed. As an essential step during infection, SARS-CoV-2 uses the receptor-binding domain (RBD) of the spike protein to engage with the receptor angiotensin-converting enzyme 2 (ACE2) on host cells1,2. Here we show that a recombinant vaccine that comprises residues 319-545 of the RBD of the spike protein induces a potent functional antibody response in immunized mice, rabbits and non-human primates (Macaca mulatta) as early as 7 or 14 days after the injection of a single vaccine dose. The sera from the immunized animals blocked the binding of the RBD to ACE2, which is expressed on the cell surface, and neutralized infection with a SARS-CoV-2 pseudovirus and live SARS-CoV-2 in vitro. Notably, vaccination also provided protection in non-human primates to an in vivo challenge with SARS-CoV-2. We found increased levels of RBD-specific antibodies in the sera of patients with COVID-19. We show that several immune pathways and CD4 T lymphocytes are involved in the induction of the vaccine antibody response. Our findings highlight the importance of the RBD domain in the design of SARS-CoV-2 vaccines and provide a rationale for the development of a protective vaccine through the induction of antibodies against the RBD domain.
Subject(s)
Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , COVID-19 , COVID-19 Vaccines , Humans , Macaca mulatta/immunology , Macaca mulatta/virology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Models, Animal , Models, Molecular , Protein Domains , SARS-CoV-2 , Serum/immunology , Spleen/cytology , Spleen/immunology , T-Lymphocytes/immunology , VaccinationABSTRACT
The coronavirus disease 2019 (COVID-19) pandemic has caused enormous psychological impact worldwide. We conducted a systematic review and meta-analysis on the psychological and mental impact of COVID-19 among healthcare workers, the general population, and patients with higher COVID-19 risk published between 1 Nov 2019 to 25 May 2020. We conducted literature research using Embase, PubMed, Google scholar and WHO COVID-19 databases. Among the initial search of 9207 studies, 62 studies with 162,639 participants from 17 countries were included in the review. The pooled prevalence of anxiety and depression was 33% (95% confidence interval: 28%-38%) and 28% (23%-32%), respectively. The prevalence of anxiety and depression was the highest among patients with pre-existing conditions and COVID-19 infection (56% [39%-73%] and 55% [48%-62%]), and it was similar between healthcare workers and the general public. Studies from China, Italy, Turkey, Spain and Iran reported higher-than-pooled prevalence among healthcare workers and the general public. Common risk factors included being women, being nurses, having lower socioeconomic status, having high risks of contracting COVID-19, and social isolation. Protective factors included having sufficient medical resources, up-to-date and accurate information, and taking precautionary measures. In conclusion, psychological interventions targeting high-risk populations with heavy psychological distress are in urgent need.
Subject(s)
Anxiety/epidemiology , Betacoronavirus , Coronavirus Infections/psychology , Depression/epidemiology , Health Personnel/psychology , Pneumonia, Viral/psychology , Anxiety/psychology , COVID-19 , China/epidemiology , Depression/psychology , Humans , Pandemics , Prevalence , SARS-CoV-2ABSTRACT
The outbreak of a novel coronavirus (SARS-CoV-2) since December 2019 in Wuhan, the major transportation hub in central China, became an emergency of major international concern. While several etiological studies have begun to reveal the specific biological features of this virus, the epidemic characteristics need to be elucidated. Notably, a long incubation time was reported to be associated with SARS-CoV-2 infection, leading to adjustments in screening and control policies. To avoid the risk of virus spread, all potentially exposed subjects are required to be isolated for 14 days, which is the longest predicted incubation time. However, based on our analysis of a larger dataset available so far, we find there is no observable difference between the incubation time for SARS-CoV-2, severe acute respiratory syndrome coronavirus (SARS-CoV), and middle east respiratory syndrome coronavirus (MERS-CoV), highlighting the need for larger and well-annotated datasets.