Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Emerg Microbes Infect ; 11(1): 1293-1307, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1788441

ABSTRACT

N-chlorotaurine (NCT) a long-lived oxidant generated by leukocytes, can be synthesized chemically and applied topically as an anti-infective to different body sites, including the lung via inhalation. Here, we demonstrate the activity of NCT against viruses causing acute respiratory tract infections, namely severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza viruses, and respiratory syncytial virus (RSV). Virucidal activity of NCT was tested in plaque assays, confirmed by RT-qPCR assays. Attack on virus proteins was investigated by mass spectrometry. NCT revealed broad virucidal activity against all viruses tested at 37°C and pH 7. A significant reduction in infectious particles of SARS-CoV-2 isolates from early 2020 by 1 log10 was detected after 15 min of incubation in 1% NCT. Proteinaceous material simulating body fluids enhanced this activity by transchlorination mechanisms (1 -2 log10 reduction within 1-10 min). Tested SARS-CoV-2 variants B.1.1.7 (Alpha) und B.1.351 (Beta) showed a similar susceptibility. Influenza virus infectious particles were reduced by 3 log10 (H3N2) to 5 log10 (H1N1pdm), RSV by 4 log10 within a few min. Mass spectrometry of NCT-treated SARS-CoV-2 spike protein and 3C-like protease, influenza virus haemagglutinin and neuraminidase, and RSV fusion glycoprotein disclosed multiple sites of chlorination and oxidation as the molecular mechanism of action. Application of 1.0% NCT as a prophylactic and therapeutic strategy against acute viral respiratory tract infections deserves comprehensive clinical investigation.


Subject(s)
COVID-19 , Respiratory Tract Infections , COVID-19/drug therapy , Humans , Influenza A Virus, H3N2 Subtype , Respiratory Syncytial Viruses , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Taurine/analogs & derivatives
2.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-314788

ABSTRACT

N-chlorotaurine (NCT) is a long-lived oxidant generated in activated cells of the innate immune system, namely neutrophilic and eosinophilic granulocytes and monocytes. NCT acts as an antiseptic agent that can be synthesized chemically and applied topically on different infected body sites. Even treatment of the lower respiratory tract via inhalation, which has been in development in the last years, was well tolerated in a recent phase I clinical trial. In this study, we demonstrate the activity of NCT against viruses causing acute respiratory tract infections, in fact severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza viruses, and respiratory syncytial virus. NCT revealed broad virucidal activity against all viruses tested. In the presence of organic proteinaceous material simulating body fluids, this activity was enhanced by transchlorination mechanisms so that significant inactivation of viruses could be achieved within 1 – 10 minutes. Inhalation of 1.0% NCT as a prophylactic and therapeutic strategy against acute viral respiratory tract infections deserves comprehensive clinical investigation.

3.
Manuf Lett ; 25: 93-97, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-733693

ABSTRACT

In this work, cold-spray technique was employed for rapid coating of copper on in-use steel parts. The primary intention was to alleviate the tendency of SARS-CoV-2 (COVID-19) virus to linger longer on touch surfaces that attract high-to-medium volume human contact, such as the push plates used in publicly accessed buildings and hospitals. The viricidal activity test revealed that 96% of the virus was inactivated within 2-hrs, which was substantially shorter than the time required for stainless steel to inactivate the virus to the same level. Moreover, it was found that the copper-coated samples significantly reduces the lifetime of COVID-19 virus to less than 5-hrs. The capability of the cold-spray technique to generate antiviral copper coating on the existing touch surface eliminates the need for replacing the entire touch surface application with copper material. Furthermore, with a short manufacturing time to produce coatings, the re-deployment of copper-coated parts can be accomplished in minutes, thereby resulting in significant cost savings. This work showcases the capability of cold-spray as a potential copper-coating solution for different in-use parts and components that can act as sources for the spread of the virus.

4.
J Med Microbiol ; 69(9): 1169-1178, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-696076

ABSTRACT

Introduction. The SARS-CoV-2 pandemic of 2020 has resulted in unparalleled requirements for RNA extraction kits and enzymes required for virus detection, leading to global shortages. This has necessitated the exploration of alternative diagnostic options to alleviate supply chain issues.Aim. To establish and validate a reverse transcription loop-mediated isothermal amplification (RT- LAMP) assay for the detection of SARS-CoV-2 from nasopharyngeal swabs.Methodology. We used a commercial RT-LAMP mastermix from OptiGene in combination with a primer set designed to detect the CDC N1 region of the SARS-CoV-2 nucleocapsid (N) gene. A single-tube, single-step fluorescence assay was implemented whereby 1 µl of universal transport medium (UTM) directly from a nasopharyngeal swab could be used as template, bypassing the requirement for RNA purification. Amplification and detection could be conducted in any thermocycler capable of holding 65 °C for 30 min and measure fluorescence in the FAM channel at 1 min intervals.Results. Assay evaluation by assessment of 157 clinical specimens previously screened by E-gene RT-qPCR revealed assay sensitivity and specificity of 87 and 100%, respectively. Results were fast, with an average time-to-positive (Tp) for 93 clinical samples of 14 min (sd±7 min). Using dilutions of SARS-CoV-2 virus spiked into UTM, we also evaluated assay performance against FDA guidelines for implementation of emergency-use diagnostics and established a limit-of-detection of 54 Tissue Culture Infectious Dose 50 per ml (TCID50 ml-1), with satisfactory assay sensitivity and specificity. A comparison of 20 clinical specimens between four laboratories showed excellent interlaboratory concordance; performing equally well on three different, commonly used thermocyclers, pointing to the robustness of the assay.Conclusion. With a simplified workflow, The N1 gene Single Tube Optigene LAMP assay (N1-STOP-LAMP) is a powerful, scalable option for specific and rapid detection of SARS-CoV-2 and an additional resource in the diagnostic armamentarium against COVID-19.


Subject(s)
Coronavirus Infections/diagnosis , Nucleic Acid Amplification Techniques/methods , Pneumonia, Viral/diagnosis , Betacoronavirus , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Clinical Laboratory Techniques , Humans , Molecular Diagnostic Techniques/methods , Nasopharynx/virology , Pandemics , RNA, Viral , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Reverse Transcription , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL