Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Year range
1.
Nat Commun ; 13(1): 3716, 2022 07 01.
Article in English | MEDLINE | ID: covidwho-1984382

ABSTRACT

The COVID-19 pandemic triggered the development of numerous diagnostic tools to monitor infection and to determine immune response. Although assays to measure binding antibodies against SARS-CoV-2 are widely available, more specific tests measuring neutralization activities of antibodies are immediately needed to quantify the extent and duration of protection that results from infection or vaccination. We previously developed a 'Serological Assay based on a Tri-part split-NanoLuc® (SATiN)' to detect antibodies that bind to the spike (S) protein of SARS-CoV-2. Here, we expand on our previous work and describe a reconfigured version of the SATiN assay, called Neutralization SATiN (Neu-SATiN), which measures neutralization activity of antibodies directly from convalescent or vaccinated sera. The results obtained with our assay and other neutralization assays are comparable but with significantly shorter preparation and run time for Neu-SATiN. As the assay is modular, we further demonstrate that Neu-SATiN enables rapid assessment of the effectiveness of vaccines and level of protection against existing SARS-CoV-2 variants of concern and can therefore be readily adapted for emerging variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Luciferases , Membrane Glycoproteins/metabolism , Neutralization Tests , Pandemics , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins
2.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-296756

ABSTRACT

The COVID-19 pandemic triggered the development of numerous diagnostic tools to monitor infection and to determine immune response. Although assays to measure binding antibodies against SARS-CoV-2 are widely available, more specific tests measuring neutralization activities of antibodies are immediately needed to quantify the extent and duration of protection that results from infection or vaccination. We previously developed a ‘Serological Assay based on a Tri-part split-NanoLuc® (SATiN)’ to detect antibodies that bind to the spike (S) protein of SARS-CoV-2. Herein, we expand on our previous work and describe a reconfigured version of the SATiN assay that can measure neutralization activity of antibodies directly from convalescent or vaccinated sera. The sensitivity is comparable to cell-based pseudovirus neutralization assays but with significantly shorter preparation and assay run time. As the assay is modular, we further demonstrate that Neutralization SATiN (Neu-SATiN) enables rapid assessment of the effectiveness of vaccines and level of protection against existing SARS-CoV-2 variants of concern and can therefore be readily adapted for emerging variants.

SELECTION OF CITATIONS
SEARCH DETAIL