Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Open Forum Infect Dis ; 9(3): ofac044, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1707639

ABSTRACT

BACKGROUND: Case-based surveillance of pediatric coronavirus disease 2019 (COVID-19) cases underestimates the prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections among children and adolescents. Our objectives were to estimate monthly SARS-CoV-2 antibody seroprevalence and calculate ratios of SARS-CoV-2 infections to reported COVID-19 cases among children and adolescents in 8 US states. METHODS: Using data from the Nationwide Commercial Laboratory Seroprevalence Survey, we estimated monthly SARS-CoV-2 antibody seroprevalence among children aged 0-17 years from August 2020 through May 2021. We calculated and compared cumulative incidence of SARS-CoV-2 infection extrapolated from population-standardized seroprevalence of antibodies to SARS-CoV-2, cumulative COVID-19 case reports since March 2020, and infection-to-case ratios among persons of all ages and children aged 0-17 years for each state. RESULTS: Of 41 583 residual serum specimens tested, children aged 0-4, 5-11, and 12-17 years accounted for 1619 (3.9%), 10 507 (25.3%), and 29 457 (70.8%), respectively. Median SARS-CoV-2 antibody seroprevalence among children increased from 8% (range, 6%-20%) in August 2020 to 37% (range, 26%-44%) in May 2021. Estimated ratios of SARS-CoV-2 infections to reported COVID-19 cases in May 2021 ranged by state from 4.7-8.9 among children and adolescents to 2.2-3.9 for all ages combined. CONCLUSIONS: Through May 2021 in selected states, the majority of children with serum specimens included in serosurveys did not have evidence of prior SARS-CoV-2 infection. Case-based surveillance underestimated the number of children infected with SARS-CoV-2 more than among all ages. Continued monitoring of pediatric SARS-CoV-2 antibody seroprevalence should inform prevention and vaccination strategies.

2.
Open forum infectious diseases ; 9(3), 2022.
Article in English | EuropePMC | ID: covidwho-1696149

ABSTRACT

Background Case-based surveillance of pediatric coronavirus disease 2019 (COVID-19) cases underestimates the prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections among children and adolescents. Our objectives were to estimate monthly SARS-CoV-2 antibody seroprevalence and calculate ratios of SARS-CoV-2 infections to reported COVID-19 cases among children and adolescents in 8 US states. Methods Using data from the Nationwide Commercial Laboratory Seroprevalence Survey, we estimated monthly SARS-CoV-2 antibody seroprevalence among children aged 0–17 years from August 2020 through May 2021. We calculated and compared cumulative incidence of SARS-CoV-2 infection extrapolated from population-standardized seroprevalence of antibodies to SARS-CoV-2, cumulative COVID-19 case reports since March 2020, and infection-to-case ratios among persons of all ages and children aged 0–17 years for each state. Results Of 41 583 residual serum specimens tested, children aged 0–4, 5–11, and 12–17 years accounted for 1619 (3.9%), 10 507 (25.3%), and 29 457 (70.8%), respectively. Median SARS-CoV-2 antibody seroprevalence among children increased from 8% (range, 6%–20%) in August 2020 to 37% (range, 26%–44%) in May 2021. Estimated ratios of SARS-CoV-2 infections to reported COVID-19 cases in May 2021 ranged by state from 4.7–8.9 among children and adolescents to 2.2–3.9 for all ages combined. Conclusions Through May 2021 in selected states, the majority of children with serum specimens included in serosurveys did not have evidence of prior SARS-CoV-2 infection. Case-based surveillance underestimated the number of children infected with SARS-CoV-2 more than among all ages. Continued monitoring of pediatric SARS-CoV-2 antibody seroprevalence should inform prevention and vaccination strategies. We estimated monthly pediatric SARS-CoV-2 infections from antibody seroprevalence compared to reported COVID-19 cases among children in 8 US states. As of May 2021, estimated numbers of children infected were 5 times higher than reported pediatric COVID-19 cases in included states.

3.
Lancet ; 399(10320): 152-160, 2022 01 08.
Article in English | MEDLINE | ID: covidwho-1506422

ABSTRACT

BACKGROUND: In the USA, COVID-19 vaccines became available in mid-December, 2020, with adults aged 65 years and older among the first groups prioritised for vaccination. We estimated the national-level impact of the initial phases of the US COVID-19 vaccination programme on COVID-19 cases, emergency department visits, hospital admissions, and deaths among adults aged 65 years and older. METHODS: We analysed population-based data reported to US federal agencies on COVID-19 cases, emergency department visits, hospital admissions, and deaths among adults aged 50 years and older during the period Nov 1, 2020, to April 10, 2021. We calculated the relative change in incidence among older age groups compared with a younger reference group for pre-vaccination and post-vaccination periods, defined by the week when vaccination coverage in a given age group first exceeded coverage in the reference age group by at least 1%; time lags for immune response and time to outcome were incorporated. We assessed whether the ratio of these relative changes differed when comparing the pre-vaccination and post-vaccination periods. FINDINGS: The ratio of relative changes comparing the change in the COVID-19 case incidence ratio over the post-vaccine versus pre-vaccine periods showed relative decreases of 53% (95% CI 50 to 55) and 62% (59 to 64) among adults aged 65 to 74 years and 75 years and older, respectively, compared with those aged 50 to 64 years. We found similar results for emergency department visits with relative decreases of 61% (52 to 68) for adults aged 65 to 74 years and 77% (71 to 78) for those aged 75 years and older compared with adults aged 50 to 64 years. Hospital admissions declined by 39% (29 to 48) among those aged 60 to 69 years, 60% (54 to 66) among those aged 70 to 79 years, and 68% (62 to 73), among those aged 80 years and older, compared with adults aged 50 to 59 years. COVID-19 deaths also declined (by 41%, 95% CI -14 to 69 among adults aged 65-74 years and by 30%, -47 to 66 among those aged ≥75 years, compared with adults aged 50 to 64 years), but the magnitude of the impact of vaccination roll-out on deaths was unclear. INTERPRETATION: The initial roll-out of the US COVID-19 vaccination programme was associated with reductions in COVID-19 cases, emergency department visits, and hospital admissions among older adults. FUNDING: None.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/epidemiology , Emergency Service, Hospital/statistics & numerical data , Mortality/trends , Patient Admission/statistics & numerical data , Aged , Aged, 80 and over , Female , Hospitals , Humans , Incidence , Male , United States/epidemiology , Vaccination/statistics & numerical data
4.
MMWR Morb Mortal Wkly Rep ; 70(36): 1249-1254, 2021 09 10.
Article in English | MEDLINE | ID: covidwho-1436412

ABSTRACT

Although COVID-19 generally results in milder disease in children and adolescents than in adults, severe illness from COVID-19 can occur in children and adolescents and might require hospitalization and intensive care unit (ICU) support (1-3). It is not known whether the B.1.617.2 (Delta) variant,* which has been the predominant variant of SARS-CoV-2 (the virus that causes COVID-19) in the United States since late June 2021,† causes different clinical outcomes in children and adolescents compared with variants that circulated earlier. To assess trends among children and adolescents, CDC analyzed new COVID-19 cases, emergency department (ED) visits with a COVID-19 diagnosis code, and hospital admissions of patients with confirmed COVID-19 among persons aged 0-17 years during August 1, 2020-August 27, 2021. Since July 2021, after Delta had become the predominant circulating variant, the rate of new COVID-19 cases and COVID-19-related ED visits increased for persons aged 0-4, 5-11, and 12-17 years, and hospital admissions of patients with confirmed COVID-19 increased for persons aged 0-17 years. Among persons aged 0-17 years during the most recent 2-week period (August 14-27, 2021), COVID-19-related ED visits and hospital admissions in the states with the lowest vaccination coverage were 3.4 and 3.7 times that in the states with the highest vaccination coverage, respectively. At selected hospitals, the proportion of COVID-19 patients aged 0-17 years who were admitted to an ICU ranged from 10% to 25% during August 2020-June 2021 and was 20% and 18% during July and August 2021, respectively. Broad, community-wide vaccination of all eligible persons is a critical component of mitigation strategies to protect pediatric populations from SARS-CoV-2 infection and severe COVID-19 illness.


Subject(s)
COVID-19/epidemiology , COVID-19/therapy , Emergency Service, Hospital/statistics & numerical data , Facilities and Services Utilization/trends , Hospitalization/trends , Adolescent , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Severity of Illness Index , United States/epidemiology , Vaccination Coverage/statistics & numerical data
5.
MMWR Morb Mortal Wkly Rep ; 70(37): 1284-1290, 2021 Sep 17.
Article in English | MEDLINE | ID: covidwho-1417365

ABSTRACT

COVID-19 vaccine breakthrough infection surveillance helps monitor trends in disease incidence and severe outcomes in fully vaccinated persons, including the impact of the highly transmissible B.1.617.2 (Delta) variant of SARS-CoV-2, the virus that causes COVID-19. Reported COVID-19 cases, hospitalizations, and deaths occurring among persons aged ≥18 years during April 4-July 17, 2021, were analyzed by vaccination status across 13 U.S. jurisdictions that routinely linked case surveillance and immunization registry data. Averaged weekly, age-standardized incidence rate ratios (IRRs) for cases among persons who were not fully vaccinated compared with those among fully vaccinated persons decreased from 11.1 (95% confidence interval [CI] = 7.8-15.8) to 4.6 (95% CI = 2.5-8.5) between two periods when prevalence of the Delta variant was lower (<50% of sequenced isolates; April 4-June 19) and higher (≥50%; June 20-July 17), and IRRs for hospitalizations and deaths decreased between the same two periods, from 13.3 (95% CI = 11.3-15.6) to 10.4 (95% CI = 8.1-13.3) and from 16.6 (95% CI = 13.5-20.4) to 11.3 (95% CI = 9.1-13.9). Findings were consistent with a potential decline in vaccine protection against confirmed SARS-CoV-2 infection and continued strong protection against COVID-19-associated hospitalization and death. Getting vaccinated protects against severe illness from COVID-19, including the Delta variant, and monitoring COVID-19 incidence by vaccination status might provide early signals of changes in vaccine-related protection that can be confirmed through well-controlled vaccine effectiveness (VE) studies.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/epidemiology , COVID-19/prevention & control , Hospitalization/statistics & numerical data , Vaccination/statistics & numerical data , Adolescent , Adult , Aged , COVID-19/mortality , COVID-19/therapy , Humans , Incidence , Middle Aged , United States/epidemiology , Young Adult
6.
MMWR Morb Mortal Wkly Rep ; 70(32): 1075-1080, 2021 Aug 13.
Article in English | MEDLINE | ID: covidwho-1355296

ABSTRACT

Population-based analyses of COVID-19 data, by race and ethnicity can identify and monitor disparities in COVID-19 outcomes and vaccination coverage. CDC recommends that information about race and ethnicity be collected to identify disparities and ensure equitable access to protective measures such as vaccines; however, this information is often missing in COVID-19 data reported to CDC. Baseline data collection requirements of the Office of Management and Budget's Standards for the Classification of Federal Data on Race and Ethnicity (Statistical Policy Directive No. 15) include two ethnicity categories and a minimum of five race categories (1). Using available COVID-19 case and vaccination data, CDC compared the current method for grouping persons by race and ethnicity, which prioritizes ethnicity (in alignment with the policy directive), with two alternative methods (methods A and B) that used race information when ethnicity information was missing. Method A assumed non-Hispanic ethnicity when ethnicity data were unknown or missing and used the same population groupings (denominators) for rate calculations as the current method (Hispanic persons for the Hispanic group and race category and non-Hispanic persons for the different racial groups). Method B grouped persons into ethnicity and race categories that are not mutually exclusive, unlike the current method and method A. Denominators for rate calculations using method B were Hispanic persons for the Hispanic group and persons of Hispanic or non-Hispanic ethnicity for the different racial groups. Compared with the current method, the alternative methods resulted in higher counts of COVID-19 cases and fully vaccinated persons across race categories (American Indian or Alaska Native [AI/AN], Asian, Black or African American [Black], Native Hawaiian or Other Pacific Islander [NH/PI], and White persons). When method B was used, the largest relative increase in cases (58.5%) was among AI/AN persons and the largest relative increase in the number of those fully vaccinated persons was among NH/PI persons (51.6%). Compared with the current method, method A resulted in higher cumulative incidence and vaccination coverage rates for the five racial groups. Method B resulted in decreasing cumulative incidence rates for two groups (AI/AN and NH/PI persons) and decreasing cumulative vaccination coverage rates for AI/AN persons. The rate ratio for having a case of COVID-19 by racial and ethnic group compared with that for White persons varied by method but was <1 for Asian persons and >1 for other groups across all three methods. The likelihood of being fully vaccinated was highest among NH/PI persons across all three methods. This analysis demonstrates that alternative methods for analyzing race and ethnicity data when data are incomplete can lead to different conclusions about disparities. These methods have limitations, however, and warrant further examination of potential bias and consultation with experts to identify additional methods for analyzing and tracking disparities when race and ethnicity data are incomplete.


Subject(s)
COVID-19/ethnology , Data Analysis , /statistics & numerical data , Bias , COVID-19/prevention & control , COVID-19/therapy , COVID-19 Vaccines/administration & dosage , Data Collection/standards , Health Status Disparities , Healthcare Disparities/ethnology , Humans , Treatment Outcome , United States/epidemiology , Vaccination Coverage/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL