Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
2.
Open forum infectious diseases ; 8(Suppl 1):S361-S361, 2021.
Article in English | EuropePMC | ID: covidwho-1564485

ABSTRACT

Background BRII-196 and BRII-198 are human monoclonal antibodies (mAb) with an extended half-life targeting distinct epitopes of the spike protein on SARS-CoV-2. Mutations in these epitope regions are continuously emerging, potentially conferring resistance to COVID-19 therapeutics in development. Individual phase I studies showed that BRII-196 or BRII-198 alone were safe and well tolerated in healthy subjects. The BRII-196 and BRII-198 cocktail is currently under evaluation in Phase 2/3 studies for the treatment of COVID-19. Methods Preclinical study: BRII-196 and BRII-198 were evaluated in the microneutralization assay using pseudo-viruses encoding mutations identified in the spike protein of a panel of SARS-CoV-2 variants of concerns, including strains originating in UK, SA, BR, CA, and India. The fold-change in neutralization IC50 titers relative to wild-type virus was calculated. Phase 1 study: healthy adults received sequential IV BRII-196 and BRII-198 (n=9) or placebo (n=3);and were followed for 180 days. Two dose levels (750mg/750mg and 1500mg/1500mg) were evaluated for safety, pharmacokinetics and immunogenicity. Interim analysis results are presented. Results Preclinical: BRII-196 and BRII-198 exhibited neutralizing activity against pseudo-virus variants that contained spike mutations of a panel of variants including B.1.1.7 (UK), B.1.351(SA), P.1(BR), B.1.427/429 (CA), B.1.526 (NY), and B.1.617 (IN), comparable to that against wild-type virus. Phase I study: BRII-196 plus BRII-198 was well tolerated with no dose-limiting adverse events (AEs), deaths, serious adverse events, or infusion reactions. The majority of AEs were isolated asymptomatic grade 1-2 laboratory abnormalities. (Table 1). Each mAb displayed pharmacokinetic characteristics expected of extended half-life YTE-antibodies. Conclusion The BRII-196 and BRII-198 cocktail was well-tolerated, and maintains neutralization against currently reported circulating variants of concern. These preclinical and clinical results support further development of BRII-196 and BRII-198 as a therapeutic or prophylactic option for SARS-CoV-2. Disclosures David A. Margolis, MD MPH, Brii Biosciences (Employee) Yao Zhang, MD, Brii Biosciences (Employee) Yun Ji, PhD, Brii Biosciences (Employee, Shareholder)

3.
JNMA J Nepal Med Assoc ; 59(236): 417-424, 2021 Apr 30.
Article in English | MEDLINE | ID: covidwho-1257585

ABSTRACT

Kawasaki disease is an acute, self-limiting vasculitis in children. Early treatment is necessary to prevent cardiovascular complications. The acute phase of Kawasaki disease may present with hemodynamic instability. An association between viral respiratory infections and Kawasaki disease has been reported. Studies have shown that Kawasaki and Kawasaki-like disease may be associated with and have symptoms overlapping COVID-19. Children with COVID-19 may present as Kawasaki-like disease with pediatric inflammatory multisystem syndrome, or macrophage activation syndrome. Clinicians need to be aware of the early diagnosis and management of Kawasaki disease to prevent the development of coronary artery aneurysms. The symptoms overlap of multisystem inflammatory disease seen in COVID-19 adds to the difficulties in timely diagnosis and treatment. Children with Kawasaki disease require regular follow-up plans for coronary artery aneurysms. This adds to the difficulties during the changed environment of COVID-19 for control and prevention. Missed diagnosis and early treatment of Kawasaki disease with immunoglobulin and aspirin results in the development of coronary artery aneurysm in up to 25% of cases, with grave consequences. Here, we briefly review the management of typical and atypical Kawasaki disease which has symptoms overlapping with the multisystem inflammatory disease as seen in COVID-19.


Subject(s)
COVID-19 , Mucocutaneous Lymph Node Syndrome , Child , Humans , Mucocutaneous Lymph Node Syndrome/complications , Mucocutaneous Lymph Node Syndrome/diagnosis , Mucocutaneous Lymph Node Syndrome/drug therapy , SARS-CoV-2 , Systemic Inflammatory Response Syndrome
4.
Nature ; 590(7845): 320-325, 2021 02.
Article in English | MEDLINE | ID: covidwho-953381

ABSTRACT

The expanding pandemic of coronavirus disease 2019 (COVID-19) requires the development of safe, efficacious and fast-acting vaccines. Several vaccine platforms are being leveraged for a rapid emergency response1. Here we describe the development of a candidate vaccine (YF-S0) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that uses live-attenuated yellow fever 17D (YF17D) vaccine as a vector to express a noncleavable prefusion form of the SARS-CoV-2 spike antigen. We assess vaccine safety, immunogenicity and efficacy in several animal models. YF-S0 has an excellent safety profile and induces high levels of SARS-CoV-2 neutralizing antibodies in hamsters (Mesocricetus auratus), mice (Mus musculus) and cynomolgus macaques (Macaca fascicularis), and-concomitantly-protective immunity against yellow fever virus. Humoral immunity is complemented by a cellular immune response with favourable T helper 1 polarization, as profiled in mice. In a hamster model2 and in macaques, YF-S0 prevents infection with SARS-CoV-2. Moreover, a single dose conferred protection from lung disease in most of the vaccinated hamsters within as little as 10 days. Taken together, the quality of the immune responses triggered and the rapid kinetics by which protective immunity can be attained after a single dose warrant further development of this potent SARS-CoV-2 vaccine candidate.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , Genetic Vectors/genetics , SARS-CoV-2/immunology , Vaccines, Attenuated/immunology , Yellow Fever Vaccine/genetics , Animals , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/genetics , Cricetinae , Disease Models, Animal , Female , Glycosylation , Macaca fascicularis/genetics , Macaca fascicularis/immunology , Macaca fascicularis/virology , Male , Mesocricetus/genetics , Mesocricetus/immunology , Mesocricetus/virology , Mice , Safety , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/adverse effects , Vaccines, Attenuated/genetics
5.
Nat Commun ; 11(1): 5838, 2020 11 17.
Article in English | MEDLINE | ID: covidwho-933686

ABSTRACT

Emergence of SARS-CoV-2 causing COVID-19 has resulted in hundreds of thousands of deaths. In search for key targets of effective therapeutics, robust animal models mimicking COVID-19 in humans are urgently needed. Here, we show that Syrian hamsters, in contrast to mice, are highly permissive to SARS-CoV-2 and develop bronchopneumonia and strong inflammatory responses in the lungs with neutrophil infiltration and edema, further confirmed as consolidations visualized by micro-CT alike in clinical practice. Moreover, we identify an exuberant innate immune response as key player in pathogenesis, in which STAT2 signaling plays a dual role, driving severe lung injury on the one hand, yet restricting systemic virus dissemination on the other. Our results reveal the importance of STAT2-dependent interferon responses in the pathogenesis and virus control during SARS-CoV-2 infection and may help rationalizing new strategies for the treatment of COVID-19 patients.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Disease Models, Animal , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , STAT2 Transcription Factor/metabolism , Signal Transduction , Animals , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Cricetinae , Immunity, Innate , Interferon Type I/genetics , Interferon Type I/metabolism , Lung/pathology , Lung/virology , Mice , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/metabolism , SARS-CoV-2 , STAT2 Transcription Factor/genetics , Virus Replication
6.
SSRN; 2020.
Preprint | SSRN | ID: ppcovidwho-1750

ABSTRACT

Background: The coronavirus 2019 (COVID-19) pandemic has led to national school closures. Fortunately, at the time of writing, most schools have begun to reopen

SELECTION OF CITATIONS
SEARCH DETAIL