Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Sustainability ; 14(15):9088, 2022.
Article in English | ProQuest Central | ID: covidwho-1994157

ABSTRACT

This study examines the spatial and temporal impacts of climate change on grain production in China. This is achieved by establishing a spatial error model consisting of four indicators: the climate, air pollution, economic behavior, and agricultural technology, covering 31 provinces in China from 2004 to 2020. These indicators are used to validate the spatial impacts of climate change on grain production. Air pollution data are used as instrumental variables to address the causality between climate and grain production. The regression results show that: First, climatic variables all have a non-linear “increasing then decreasing” effect on food production. Second, SO2, PM10, and PM2.5 have a negative impact on grain production. Based on the model, changes in the climatic production potential of grain crops can be calculated, and the future spatial layout of climate production can also be predicted by using random forests. Studies have shown that the median value of China’s grain production potential is decreasing, and the low value is increasing.

2.
Vaccine ; 2022 Jul 29.
Article in English | MEDLINE | ID: covidwho-1967205

ABSTRACT

BACKGROUND: The safety and immunogenicity of the coadministration of an inactivated SARS-CoV-2 vaccine (Sinopharm BBIBP-CorV), quadrivalent split-virion inactivated influenza vaccine (IIV4), and 23-valent pneumococcal polysaccharide vaccine (PPV23) in adults in China is unknown. METHODS: In this open-label, non-inferiority, randomised controlled trial, participants aged ≥ 18 years were recruited from the community. Individuals were eligible if they had no history of SARS-CoV-2 vaccine or any pneumonia vaccine and had not received an influenza vaccine during the 2020-21 influenza season. Eligible participants were randomly assigned (1:1:1), using block randomization stratified, to either: SARS-CoV-2 vaccine and IIV4 followed by SARS-CoV-2 vaccine and PPV23 (SARS-CoV-2 + IIV4/PPV23 group); two doses of SARS-CoV-2 vaccine (SARS-CoV-2 vaccine group); or IIV4 followed by PPV23 (IIV4/PPV23 group). Vaccines were administered 28 days apart, with blood samples taken on day 0 and day 28 before vaccination, and on day 56. RESULTS: Between March 10 and March 15, 2021, 1152 participants were recruited and randomly assigned to three groups (384 per group). 1132 participants were included in the per-protocol population (375 in the SARS-CoV-2 + IIV4/PPV23 group, 380 in the SARS-CoV-2 vaccine group, and 377 in the IIV4/PPV23 group). The seroconversion rate (100 % vs 100 %) and GMT (159.13 vs 173.20; GMT ratio of 0.92 [95 % CI 0.83 to 1.02]) of SARS-CoV-2 neutralising antibodies in the SARS-CoV-2 + IIV4/PPV23 group was not inferior to those in the SARS-CoV-2 vaccine group. The SARS-CoV-2 + IIV4/PPV23 group was not inferior to the IIV4/PPV23 group in terms of seroconversion rates and GMT of influenza virus antibodies for all strains except for the seroconversion rate for the B/Yamagata strain. The SARS-CoV-2 + IIV4/PPV23 group was not inferior to the IIV4/PPV23 group regarding seroconversion rates and GMC of Streptococcus pneumoniae IgG antibodies specific to all serotypes. All vaccines were well tolerated. CONCLUSIONS: The coadministration of the inactivated SARS-CoV-2 vaccine and IIV4/PPV23 is safe with satisfactory immunogenicity. This study is registered with ClinicalTrials.gov, NCT04790851.

3.
Nano Res ; 15(8): 7313-7319, 2022.
Article in English | MEDLINE | ID: covidwho-1943196

ABSTRACT

Early detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is an efficient way to prevent the spread of coronavirus disease 2019 (COVID-19). Detecting SARS-CoV-2 antigen can be rapid and convenient, but it is still challenging to develop highly sensitive methods for effective diagnosis. Herein, a lateral flow assay (LFA) based on fluorescent nanoparticles emitting in the second near-infrared (NIR-II) window is developed for sensitive detection of SARS-CoV-2 antigen. Benefiting from the NIR-II fluorescence with high penetration and low autofluorescence, such NIR-II based LFA allows enhanced signal-to-background ratio, and the limit of detection is down to 0.01 ng·mL-1 of SARS-CoV-2 antigen. In the clinical swab sample tests, the NIR-II LFA outperforms the colloidal gold LFA with higher overall percent agreement with the polymerase chain reaction test. The clinical samples with low antigen concentrations (∼ 0.015-∼ 0.068 ng·mL-1) can be successfully detected by the NIR-II LFA, but fail for the colloidal gold LFA. The NIR-II LFA can provide a promising platform for highly sensitive, rapid, and cost-effective method for early diagnosis and mass screening of SARS-CoV-2 infection. Electronic Supplementary Material: Supplementary material (the operation procedure and cost of the materials needed of NIR-II lateral flow assays, the dynamic light scattering spectrum of the NIR-II nanoparticles, the components and testing principle, optimization of main parameters pertaining to the LFA performance, the colloidal gold LFA strip, the fluorescence intensity distribution curves and the T/C values of the strips for clinical samples by NIR-II LFA, and results of clinical swab samples detected by colloidal gold LFA) is available in the online version of this article at 10.1007/s12274-022-4351-1.

4.
Nat Commun ; 13(1): 2576, 2022 05 11.
Article in English | MEDLINE | ID: covidwho-1931386

ABSTRACT

Engineered natural killer (NK) cells represent a promising option for immune therapy option due to their immediate availability in allogeneic settings. Severe acute diseases, such as COVID-19, require targeted and immediate intervention. Here we show engineering of NK cells to express (1) soluble interleukin-15 (sIL15) for enhancing their survival and (2) a chimeric antigen receptor (CAR) consisting of an extracellular domain of ACE2, targeting the spike protein of SARS-CoV-2. These CAR NK cells (mACE2-CAR_sIL15 NK cells) bind to VSV-SARS-CoV-2 chimeric viral particles as well as the recombinant SARS-CoV-2 spike protein subunit S1 leading to enhanced NK cell production of TNF-α and IFN-γ and increased in vitro and in vivo cytotoxicity against cells expressing the spike protein. Administration of mACE2-CAR_sIL15 NK cells maintains body weight, reduces viral load, and prolongs survival of transgenic mice expressing human ACE2 upon infection with live SARS-CoV-2. These experiments, and the capacity of mACE2-CAR_sIL15 NK cells to retain their activity following cryopreservation, demonstrate their potential as an allogeneic off-the-shelf therapy for COVID-19 patients who are faced with limited treatment options.


Subject(s)
COVID-19 , Receptors, Chimeric Antigen , Angiotensin-Converting Enzyme 2 , Animals , COVID-19/therapy , Humans , Interleukin-15/metabolism , Killer Cells, Natural , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
5.
Int Immunopharmacol ; 101(Pt A): 108292, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1487772

ABSTRACT

Leukopenia is a common manifestation of many diseases, including global outbreak SAS-CoV-2 infection. Granulocyte-macrophage colony-stimulating factor (GM -CSF) has been proved to be effective in promoting lymphocyte regeneration, but adverse immunological effects have also emerged. This study aim to investigate the effect of GM -CSF on BCR heavy chain CDR3 repertoire while promoting lymphocyte regeneration. Cyclophosphamide (CTX) and GM -CSF were used to inhibit and stimulate bone marrow hematopoiesis, respectively. High throughput sequencing was applied to detect the characteristics of BCR CDR3 repertoire in controls, CTX group and GM -CSF group. The white blood cells (WBCs) were quickly reduced (P < 0.05) with lymphocytes decreasing causing by CTX, and the WBCs and lymphocytes returned to the level of controls after GM -CSF treatment. The diversity of BCR heavy chain CDR3 repertoire was also significantly decreased in CTX group. Although there is still a big gap from the controls, the diversity was picked up after GM -CSF treatment. The expression of IGHD01-01, IGHD02-14 and IGHJ04-01 with high-frequency usage regularly and significantly changed in three groups, and many genes with low-frequency usage lost in CTX group and did not reappear in GM -CSF group. Moreover, two shared sequences and accounted for the highest proportion in GM -CSF group have been detected in animal model of chronic lymphocytic leukemia. These results revealed that GM -CSF can partially restore changes in the BCR heavy chain CDR3 repertoire while promoting lymphocyte regeneration, but it may also lead to rearrangement, proliferation and activation of abnormal B cells, which can provide a basis for further study on the adverse immunological effects and mechanism of GM -CSF treatment.


Subject(s)
Cyclophosphamide/adverse effects , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Leukopenia/immunology , Lymphocytes/drug effects , Lymphocytes/immunology , Receptors, Antigen, B-Cell/drug effects , Receptors, Antigen, B-Cell/metabolism , Animals , Complementarity Determining Regions/drug effects , Complementarity Determining Regions/genetics , Complementarity Determining Regions/metabolism , Cyclophosphamide/therapeutic use , Female , Granulocyte-Macrophage Colony-Stimulating Factor/therapeutic use , Immunoglobulin Heavy Chains/drug effects , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/metabolism , Immunoglobulin Joining Region/drug effects , Immunoglobulin Joining Region/metabolism , Immunoglobulin Variable Region/drug effects , Immunoglobulin Variable Region/metabolism , Leukocytes/drug effects , Leukopenia/chemically induced , Leukopenia/drug therapy , Lymphocytes/metabolism , Mice, Inbred BALB C , Receptors, Antigen, B-Cell/immunology
6.
JAMA ; 326(1): 35-45, 2021 07 06.
Article in English | MEDLINE | ID: covidwho-1318655

ABSTRACT

Importance: Although effective vaccines against COVID-19 have been developed, additional vaccines are still needed. Objective: To evaluate the efficacy and adverse events of 2 inactivated COVID-19 vaccines. Design, Setting, and Participants: Prespecified interim analysis of an ongoing randomized, double-blind, phase 3 trial in the United Arab Emirates and Bahrain among adults 18 years and older without known history of COVID-19. Study enrollment began on July 16, 2020. Data sets used for the interim analysis of efficacy and adverse events were locked on December 20, 2020, and December 31, 2020, respectively. Interventions: Participants were randomized to receive 1 of 2 inactivated vaccines developed from SARS-CoV-2 WIV04 (5 µg/dose; n = 13 459) and HB02 (4 µg/dose; n = 13 465) strains or an aluminum hydroxide (alum)-only control (n = 13 458); they received 2 intramuscular injections 21 days apart. Main Outcomes and Measures: The primary outcome was efficacy against laboratory-confirmed symptomatic COVID-19 14 days following a second vaccine dose among participants who had no virologic evidence of SARS-CoV-2 infection at randomization. The secondary outcome was efficacy against severe COVID-19. Incidence of adverse events and reactions was collected among participants who received at least 1 dose. Results: Among 40 382 participants randomized to receive at least 1 dose of the 2 vaccines or alum-only control (mean age, 36.1 years; 32 261 [84.4%] men), 38 206 (94.6%) who received 2 doses, contributed at least 1 follow-up measure after day 14 following the second dose, and had negative reverse transcriptase-polymerase chain reaction test results at enrollment were included in the primary efficacy analysis. During a median (range) follow-up duration of 77 (1-121) days, symptomatic COVID-19 was identified in 26 participants in the WIV04 group (12.1 [95% CI, 8.3-17.8] per 1000 person-years), 21 in the HB02 group (9.8 [95% CI, 6.4-15.0] per 1000 person-years), and 95 in the alum-only group (44.7 [95% CI, 36.6-54.6] per 1000 person-years), resulting in a vaccine efficacy, compared with alum-only, of 72.8% (95% CI, 58.1%-82.4%) for WIV04 and 78.1% (95% CI, 64.8%-86.3%) for HB02 (P < .001 for both). Two severe cases of COVID-19 occurred in the alum-only group and none occurred in the vaccine groups. Adverse reactions 7 days after each injection occurred in 41.7% to 46.5% of participants in the 3 groups; serious adverse events were rare and similar in the 3 groups (WIV04: 64 [0.5%]; HB02: 59 [0.4%]; alum-only: 78 [0.6%]). Conclusions and Relevance: In this prespecified interim analysis of a randomized clinical trial, treatment of adults with either of 2 inactivated SARS-CoV-2 vaccines significantly reduced the risk of symptomatic COVID-19, and serious adverse events were rare. Data collection for final analysis is pending. Trial Registration: ClinicalTrials.gov Identifier: NCT04510207; Chinese Clinical Trial Registry: ChiCTR2000034780.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , Adult , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Datasets as Topic , Double-Blind Method , Female , Humans , Injections, Intramuscular , Male , Middle Aged , Middle East , Vaccines, Inactivated/immunology
7.
Leuk Res Rep ; 16: 100258, 2021.
Article in English | MEDLINE | ID: covidwho-1309329

ABSTRACT

Acute promyelocytic leukemia (APL) is a highly curable hematology malignancy. The major factor influence prognosis of APL is early deaths (ED) during the course of induction therapy, especially in high-risk APL. Therefore, effective reduction of white blood cells and correction of coagulation abnormalities are the key points of treatment for high-risk APL. Due to COVID19 pandemic in China since Jan 2020, some patients with hematologic malignancies suspected of COVID-19 infection had been isolated and traditional intravenous chemotherapy drugs is not available in isolated wards. We had explored a regimen of an oral etoposide to reduce the tumor burden for high-risk APL and dual induction with retinoic acid (ATRA) and oral arsenic realgar-Indigo nautralis formula (RIF), and finally two cases of high-risk APL patients received complete remission in one month. It is indicated that pure oral induction regimen: oral etoposide, ATRA and RIF provides a novel therapy in outpatient clinics.

8.
China CDC Wkly ; 3(27): 569-575, 2021 Jul 02.
Article in English | MEDLINE | ID: covidwho-1262765

ABSTRACT

What is already known about this topic? The coronavirus disease 2019 (COVID-19) vaccine development has been progressing, but acceptance of the new vaccines by healthcare workers (HCWs) was not well known prior to approval of COVID-19 vaccines in China. What is added by this report? This study found that before vaccine approval, Beijing HCWs expressed moderate willingness to get vaccinated. Factors positively influencing willingness included free vaccination and belief that the vaccine had been fully evaluated. A negatively influencing factor was presence of an underlying disease. Trust in vaccines, in general, was positively associated with willingness to get new vaccines. What are the implications for public health practice? COVID-19 vaccines should be provided at no cost to HCWs. Effective measures should be taken to enhance the acceptance of COVID-19 vaccination among HCWs in China.

9.
China CDC Wkly ; 3(25): 531-537, 2021 Jun 18.
Article in English | MEDLINE | ID: covidwho-1248606

ABSTRACT

WHAT IS ALREADY KNOWN ON THIS TOPIC?: Preclinical trials showed the effectiveness of domestic inactivated vaccine candidates for coronavirus disease 2019 (COVID-19). However, it is necessary to evaluate the willingness of the public to receive future domestic vaccines and to understand factors associated with willingness at the early stages of vaccine development. WHAT IS ADDED BY THIS REPORT?: Through May 25, 2020, 70.48% were willing to receive future domestic COVID-19 vaccines. Confidence in vaccines had the largest impact on public willingness, while age and presence of underlying chronic disease did not significantly increase public willingness. WHAT ARE THE IMPLICATIONS FOR PUBLIC HEALTH PRACTICE?: It is necessary to increase awareness of COVID-19 vaccines among people with high risk of severe infection and to build public confidence in vaccines. Releasing accurate, timely, and reliable data to the public can help increase willingness to get vaccinated.

10.
JAMA ; 326(1): 35-45, 2021 07 06.
Article in English | MEDLINE | ID: covidwho-1242692

ABSTRACT

Importance: Although effective vaccines against COVID-19 have been developed, additional vaccines are still needed. Objective: To evaluate the efficacy and adverse events of 2 inactivated COVID-19 vaccines. Design, Setting, and Participants: Prespecified interim analysis of an ongoing randomized, double-blind, phase 3 trial in the United Arab Emirates and Bahrain among adults 18 years and older without known history of COVID-19. Study enrollment began on July 16, 2020. Data sets used for the interim analysis of efficacy and adverse events were locked on December 20, 2020, and December 31, 2020, respectively. Interventions: Participants were randomized to receive 1 of 2 inactivated vaccines developed from SARS-CoV-2 WIV04 (5 µg/dose; n = 13 459) and HB02 (4 µg/dose; n = 13 465) strains or an aluminum hydroxide (alum)-only control (n = 13 458); they received 2 intramuscular injections 21 days apart. Main Outcomes and Measures: The primary outcome was efficacy against laboratory-confirmed symptomatic COVID-19 14 days following a second vaccine dose among participants who had no virologic evidence of SARS-CoV-2 infection at randomization. The secondary outcome was efficacy against severe COVID-19. Incidence of adverse events and reactions was collected among participants who received at least 1 dose. Results: Among 40 382 participants randomized to receive at least 1 dose of the 2 vaccines or alum-only control (mean age, 36.1 years; 32 261 [84.4%] men), 38 206 (94.6%) who received 2 doses, contributed at least 1 follow-up measure after day 14 following the second dose, and had negative reverse transcriptase-polymerase chain reaction test results at enrollment were included in the primary efficacy analysis. During a median (range) follow-up duration of 77 (1-121) days, symptomatic COVID-19 was identified in 26 participants in the WIV04 group (12.1 [95% CI, 8.3-17.8] per 1000 person-years), 21 in the HB02 group (9.8 [95% CI, 6.4-15.0] per 1000 person-years), and 95 in the alum-only group (44.7 [95% CI, 36.6-54.6] per 1000 person-years), resulting in a vaccine efficacy, compared with alum-only, of 72.8% (95% CI, 58.1%-82.4%) for WIV04 and 78.1% (95% CI, 64.8%-86.3%) for HB02 (P < .001 for both). Two severe cases of COVID-19 occurred in the alum-only group and none occurred in the vaccine groups. Adverse reactions 7 days after each injection occurred in 41.7% to 46.5% of participants in the 3 groups; serious adverse events were rare and similar in the 3 groups (WIV04: 64 [0.5%]; HB02: 59 [0.4%]; alum-only: 78 [0.6%]). Conclusions and Relevance: In this prespecified interim analysis of a randomized clinical trial, treatment of adults with either of 2 inactivated SARS-CoV-2 vaccines significantly reduced the risk of symptomatic COVID-19, and serious adverse events were rare. Data collection for final analysis is pending. Trial Registration: ClinicalTrials.gov Identifier: NCT04510207; Chinese Clinical Trial Registry: ChiCTR2000034780.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , Adult , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Datasets as Topic , Double-Blind Method , Female , Humans , Injections, Intramuscular , Male , Middle Aged , Middle East , Vaccines, Inactivated/immunology
11.
Water Res ; 200: 117243, 2021 Jul 15.
Article in English | MEDLINE | ID: covidwho-1230811

ABSTRACT

The outbreak of coronavirus infectious disease-2019 (COVID-19) pneumonia challenges the rapid interrogation of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in human and environmental samples. In this study, we developed an assay using surface enhanced Raman scattering (SERS) coupled with multivariate analysis to detect SARS-CoV-2 in an ultra-fast manner without any pretreatment (e.g., RNA extraction). Using silver-nanorod SERS array functionalized with cellular receptor angiotensin-converting enzyme 2 (ACE2), we obtained strong SERS signals of ACE2 at 1032, 1051, 1089, 1189, 1447 and 1527 cm-1. The recognition and binding of receptor binding domain (RBD) of SARS-CoV-2 spike protein on SERS assay significantly quenched the spectral intensities of most peaks and exhibited a shift from 1189 to 1182 cm-1. On-site tests on 23 water samples with a portable Raman spectrometer proved its accuracy and easy-operation for spot detection of SARS-CoV-2 to evaluate disinfection performance, explore viral survival in environmental media, assess viral decay in wastewater treatment plant and track SARS-CoV-2 in pipe network. Our findings raise a state-of-the-art spectroscopic tool to screen and interrogate viruses with RBD for human cell entry, proving its feasibility and potential as an ultra-fast detection tool for wastewater-based epidemiology.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Protein Domains , Spectrum Analysis, Raman , Spike Glycoprotein, Coronavirus
12.
Eur J Nucl Med Mol Imaging ; 47(11): 2525-2532, 2020 10.
Article in English | MEDLINE | ID: covidwho-647136

ABSTRACT

BACKGROUND: The novel coronavirus disease 2019 (COVID-19) is an emerging worldwide threat to public health. While chest computed tomography (CT) plays an indispensable role in its diagnosis, the quantification and localization of lesions cannot be accurately assessed manually. We employed deep learning-based software to aid in detection, localization and quantification of COVID-19 pneumonia. METHODS: A total of 2460 RT-PCR tested SARS-CoV-2-positive patients (1250 men and 1210 women; mean age, 57.7 ± 14.0 years (age range, 11-93 years) were retrospectively identified from Huoshenshan Hospital in Wuhan from February 11 to March 16, 2020. Basic clinical characteristics were reviewed. The uAI Intelligent Assistant Analysis System was used to assess the CT scans. RESULTS: CT scans of 2215 patients (90%) showed multiple lesions of which 36 (1%) and 50 patients (2%) had left and right lung infections, respectively (> 50% of each affected lung's volume), while 27 (1%) had total lung infection (> 50% of the total volume of both lungs). Overall, 298 (12%), 778 (32%) and 1300 (53%) patients exhibited pure ground glass opacities (GGOs), GGOs with sub-solid lesions and GGOs with both sub-solid and solid lesions, respectively. Moreover, 2305 (94%) and 71 (3%) patients presented primarily with GGOs and sub-solid lesions, respectively. Elderly patients (≥ 60 years) were more likely to exhibit sub-solid lesions. The generalized linear mixed model showed that the dorsal segment of the right lower lobe was the favoured site of COVID-19 pneumonia. CONCLUSION: Chest CT combined with analysis by the uAI Intelligent Assistant Analysis System can accurately evaluate pneumonia in COVID-19 patients.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnostic imaging , Deep Learning , Lung/diagnostic imaging , Multidetector Computed Tomography/methods , Pandemics , Pneumonia, Viral/diagnostic imaging , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Child , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Female , Humans , Linear Models , Male , Middle Aged , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Software , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL