Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Remote Sensing ; 14(8):1869, 2022.
Article in English | MDPI | ID: covidwho-1785893

ABSTRACT

Air pollution is a severe environmental problem in the Indian subcontinent. Largely caused by the rapid growth of the population, industrialization, and urbanization, air pollution can adversely affect human health and environment. To mitigate such adverse impacts, the Indian government launched the National Clean Air Programme (NCAP) in January 2019. Meanwhile, the unexpected city-lockdown due to the COVID-19 pandemic in March 2020 in India greatly reduced human activities and thus anthropogenic emissions of gaseous and aerosol pollutants. The NCAP and the lockdown could provide an ideal field experiment for quantifying the extent to which various levels of human activity reduction impact air quality in the Indian subcontinent. Here, we study the improvement in air quality due to COVID-19 and the NCAP in the India subcontinent by employing multiple satellite products and surface observations. Satellite data shows significant reductions in nitrogen dioxide (NO2) by 17% and aerosol optical depth (AOD) by 20% during the 2020 lockdown with reference to the mean levels between 2005–2019. No persistent reduction in NO2 nor AOD is detectable during the NCAP period (2019). Surface observations show consistent reductions in PM2.5 and NO2 during the 2020 lockdown in seven cities across the Indian subcontinent, except Mumbai in Central India. The increase in relative humidity and the decrease in the planetary boundary layer also play an important role in influencing air quality during the 2020 lockdown. With the decrease in aerosols during the lockdown, net radiation fluxes show positive anomalies at the surface and negative anomalies at the top of the atmosphere over most parts of the Indian subcontinent. The results of this study could provide valuable information for policymakers in South Asia to adjust the scientific measures proposed in the NCAP for efficient air pollution mitigation.

2.
Curr Top Med Chem ; 22(2): 83-94, 2022.
Article in English | MEDLINE | ID: covidwho-1725177

ABSTRACT

As a traditional Chinese medicine (TCM), Shuang-Huang-Lian (SHL) has been widely used for treating infectious diseases of the respiratory tract such as encephalitis, pneumonia, and asthma. During the past few decades, considerable research has focused on pharmacological action, pharmacokinetic interaction with antibiotics, and clinical applications of SHL. A huge and more recent body of pharmacokinetic studies support the combination of SHL and antibiotics have different effects such as antagonism and synergism. SHL has been one of the best-selling TCM products. However, there is no systematic review of SHL preparations, ranging from protection against respiratory tract infections to interaction with antibiotics. Since their important significance in clinical therapy, the pharmacodynamics, pharmacokinetics, and interactions with antibiotics of SHL were reviewed and discussed. In addition, this review attempts to explore the possible potential mechanism of SHL preparations in the prevention and treatment of COVID-19. We are concerned about the effects of SHL against viruses and bacteria, as well as its interactions with antibiotics in an attempt to provide a new strategy for expanding the clinical research and medication of SHL preparations.


Subject(s)
COVID-19 , Drugs, Chinese Herbal , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drugs, Chinese Herbal/pharmacology , Humans , Medicine, Chinese Traditional , SARS-CoV-2
3.
Results Phys ; : 104990, 2021 Nov 10.
Article in English | MEDLINE | ID: covidwho-1510271

ABSTRACT

To contain the novel SARS-CoV-2 (COVID-19) spreading worldwide, governments generally adopt two measures: quarantining the infected people and vaccinating the susceptible people. To investigate the disease latency's influence on the transmission characteristics of the system, we establish a new SIQR-V (susceptible-infective-quarantined-recovered-vaccinated) dynamic model that focus on the effectiveness of quarantine and vaccination measures in the scale-free network. We use theoretical analysis and numerical simulation to explore the evolution trend of different nodes and factors influencing the system stability. The study shows that both the complexity of the network and latency delay can affect the evolution trend of the infected nodes in the system. Still, only latency delay can destroy the stability of the system. In addition, through the parameter sensitivity analysis of the basic reproduction number, we find that the effect of the vaccination parameter α on the basic reproduction number R 0 is more significant than that of transmission rate ß and quarantine parameter σ . It shows that vaccination is one of the most effective public policies to prevent infectious diseases' spread. Finally, we calculate the basic reproduction numbers that are greater than one for Germany and Pakistan under COVID-19 and validate the model's effectiveness based on the disease data of COVID-19 in Germany. The results show that the changing trend of the infected population in Germany based on the SIQR-V model is roughly the same as that reflected by the actual epidemic data in Germany. Therefore, providing suggestions and guidance for treating infectious diseases based on this model can effectively reduce the harm caused by the outbreak of contagious diseases.

4.
Curr Top Med Chem ; 22(2): 83-94, 2022.
Article in English | MEDLINE | ID: covidwho-1463385

ABSTRACT

As a traditional Chinese medicine (TCM), Shuang-Huang-Lian (SHL) has been widely used for treating infectious diseases of the respiratory tract such as encephalitis, pneumonia, and asthma. During the past few decades, considerable research has focused on pharmacological action, pharmacokinetic interaction with antibiotics, and clinical applications of SHL. A huge and more recent body of pharmacokinetic studies support the combination of SHL and antibiotics have different effects such as antagonism and synergism. SHL has been one of the best-selling TCM products. However, there is no systematic review of SHL preparations, ranging from protection against respiratory tract infections to interaction with antibiotics. Since their important significance in clinical therapy, the pharmacodynamics, pharmacokinetics, and interactions with antibiotics of SHL were reviewed and discussed. In addition, this review attempts to explore the possible potential mechanism of SHL preparations in the prevention and treatment of COVID-19. We are concerned about the effects of SHL against viruses and bacteria, as well as its interactions with antibiotics in an attempt to provide a new strategy for expanding the clinical research and medication of SHL preparations.


Subject(s)
COVID-19 , Drugs, Chinese Herbal , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drugs, Chinese Herbal/pharmacology , Humans , Medicine, Chinese Traditional , SARS-CoV-2
5.
Biosci Trends ; 15(2): 93-99, 2021 May 11.
Article in English | MEDLINE | ID: covidwho-1154737

ABSTRACT

As the COVID-19 epidemic is still ongoing, a more rapid detection of SARS-CoV-2 infection such as viral antigen-detection needs to be evaluated for early diagnosis of COVID-19 disease. Here, we report the dynamic changes of SARS-CoV-2 viral antigens in nasopharyngeal swabs of COVID-19 patients and its association with the viral nucleic acid clearance and clinical outcomes. Eighty-five COVID-19 patients were enrolled for detection of SARS-CoV-2 viral antigens, including 57 anti-SARS-CoV-2 antibody negative cases and 28 antibody positive cases. The viral antigen could be detected in 52.63% (30/57) patients with SARS-CoV-2 antibody negative at the early stage of SARS-CoV-2 infection, especially in the first 5 days after disease onset (p = 0.0018) and disappeared in about 8 days after disease onset. Viral antigens were highly detectable in patients with low Ct value (less than 30) of SARS-CoV-2 nucleic acid RT-PCT assay, suggesting the expression of viral antigen was associated with high viral load. Furthermore, positive antigen detection indicated disease progression, nine cases with positive antigen (9/30, 30.0%), in contrast to two cases (2/27, 7.40%) (p = 0.0444) with negative antigen, which progressed into severe disease. Thus, the viral antigens were persistent in early stages of infection when virus was in highly replicating status, and viral antigen detection promises to rapidly screen positive patients in the early stage of SARS-CoV-2 infection.


Subject(s)
Antigens, Viral/analysis , COVID-19 Testing/methods , COVID-19/diagnosis , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Antigens, Viral/blood , COVID-19/immunology , COVID-19/virology , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , COVID-19 Testing/trends , China/epidemiology , Disease Progression , Early Diagnosis , False Negative Reactions , Female , Humans , Male , Middle Aged , Nasopharynx/immunology , Nasopharynx/virology , Pandemics , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Time Factors , Viral Load , Young Adult
6.
Clin Transl Med ; 10(2): e90, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-583657

ABSTRACT

The pandemic of novel coronavirus disease 2019 (COVID-19) seriously threatened the public health all over the world. A colloidal gold immunochromatography assay for IgM/IgG antibodies against the receptor-binding domain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S1 protein was established to assess its rapid diagnostic value. We first designed and manufactured all contents of the test cassette of SARS-CoV-2 rapid test kit: the colloidal gold-labeled mouse-antihuman lgM/lgG antibody, the recombinant SARS-CoV-2 antigen, the nitrocellulose membrane control line, and specimen diluents. Furthermore, reverse transcription-polymerase chain reaction (RT-PCR) assay, colloidal gold immunochromatography assay, serological validation of cross reaction with other common viruses, and clinical validation were performed. The kit was finally evaluated by 75 serum/plasma samples of SARS-CoV-2 infection cases and 139 healthy samples as control, with the result of that the sensitivity, specificity, and accuracy for IgM were 90.67%, 97.84%, and 95.33%, whereas for IgG were 69.33%, 99.28%, and 88.79%, respectively; the combination of IgM and IgG could improve the value: 92.00%, 97.12%, and 95.33%, respectively. Therefore, the rapid detection kit has high sensitivity and specificity, especially for IgM&IgG, showing a critical value in clinical application and epidemic control of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL