Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Front Immunol ; 13: 1010105, 2022.
Article in English | MEDLINE | ID: covidwho-2233969

ABSTRACT

Introduction: Considering the likely need for the development of novel effective vaccines adapted to emerging relevant CoV-2 variants, the increasing knowledge of epitope recognition profile among convalescents and afterwards vaccinated with identification of immunodominant regions may provide important information. Methods: We used an RBD peptide microarray to identify IgG and IgA binding regions in serum of 71 COVID-19 convalescents and 18 vaccinated individuals. Results: We found a set of immunodominant RBD antibody epitopes, each recognized by more than 30% of the tested cohort, that differ among the two different groups and are within conserved regions among betacoronavirus. Of those, only one peptide, P44 (S415-429), recognized by 68% of convalescents, presented IgG and IgA antibody reactivity that positively correlated with nAb titers, suggesting that this is a relevant RBD region and a potential target of IgG/IgA neutralizing activity. Discussion: This peptide is localized within the area of contact with ACE-2 and harbors the mutation hotspot site K417 present in gamma (K417T), beta (K417N), and omicron (K417N) variants of concern. The epitope profile of vaccinated individuals differed from convalescents, with a more diverse repertoire of immunodominant peptides, recognized by more than 30% of the cohort. Noteworthy, immunodominant regions of recognition by vaccinated coincide with mutation sites at Omicron BA.1, an important variant emerging after massive vaccination. Together, our data show that immune pressure induced by dominant antibody responses may favor hotspot mutation sites and the selection of variants capable of evading humoral response.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Antibody Formation , Immunodominant Epitopes/genetics , Epitopes , Immunoglobulin A , Mutation , Immunoglobulin G
2.
Commun Biol ; 5(1): 805, 2022 08 11.
Article in English | MEDLINE | ID: covidwho-1991680

ABSTRACT

SARS-CoV-2 papain-like protease (PLpro) covers multiple functions. Beside the cysteine-protease activity, facilitating cleavage of the viral polypeptide chain, PLpro has the additional and vital function of removing ubiquitin and ISG15 (Interferon-stimulated gene 15) from host-cell proteins to support coronaviruses in evading the host's innate immune responses. We identified three phenolic compounds bound to PLpro, preventing essential molecular interactions to ISG15 by screening a natural compound library. The compounds identified by X-ray screening and complexed to PLpro demonstrate clear inhibition of PLpro in a deISGylation activity assay. Two compounds exhibit distinct antiviral activity in Vero cell line assays and one inhibited a cytopathic effect in non-cytotoxic concentration ranges. In the context of increasing PLpro mutations in the evolving new variants of SARS-CoV-2, the natural compounds we identified may also reinstate the antiviral immune response processes of the host that are down-regulated in COVID-19 infections.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Allosteric Site , Antiviral Agents/pharmacology , Coronavirus Papain-Like Proteases , Humans , Papain/metabolism , Peptide Hydrolases/metabolism , SARS-CoV-2
3.
Front Cell Infect Microbiol ; 12: 787411, 2022.
Article in English | MEDLINE | ID: covidwho-1902924

ABSTRACT

Reliable serological tests for the detection of SARS-CoV-2 antibodies among infected or vaccinated individuals are important for epidemiological and clinical studies. Low-cost approaches easily adaptable to high throughput screenings, such as Enzyme-Linked Immunosorbent Assays (ELISA) or electrochemiluminescence immunoassay (ECLIA), can be readily validated using different SARS-CoV-2 antigens. A total of 1,119 serum samples collected between March and July of 2020 from health employees and visitors to the University Hospital at the University of São Paulo were screened with the Elecsys® Anti-SARS-CoV-2 immunoassay (Elecsys) (Roche Diagnostics) and three in-house ELISAs that are based on different antigens: the Nucleoprotein (N-ELISA), the Receptor Binding Domain (RBD-ELISA), and a portion of the S1 protein (ΔS1-ELISA). Virus neutralization test (CPE-VNT) was used as the gold standard to validate the serological assays. We observed high sensitivity and specificity values with the Elecsys (96.92% and 98.78%, respectively) and N-ELISA (93.94% and 94.40%, respectively), compared with RBD-ELISA (90.91% sensitivity and 88.80% specificity) and the ΔS1-ELISA (77.27% sensitivity and 76% specificity). The Elecsys® proved to be a reliable SARS-CoV-2 serological test. Similarly, the recombinant SARS-CoV-2 N protein displayed good performance in the ELISA tests. The availability of reliable diagnostic tests is critical for the precise determination of infection rates, particularly in countries with high SARS-CoV-2 infection rates, such as Brazil. Collectively, our results indicate that the development and validation of new serological tests based on recombinant proteins may provide new alternatives for the SARS-CoV-2 diagnostic market.


Subject(s)
COVID-19 , Antibodies, Viral , Brazil/epidemiology , COVID-19/diagnosis , Clinical Laboratory Techniques/methods , Hospitals , Humans , Retrospective Studies , SARS-CoV-2 , Sensitivity and Specificity
4.
Medicine (Baltimore) ; 100(51): e28288, 2021 Dec 23.
Article in English | MEDLINE | ID: covidwho-1591728

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a viral respiratory disease that spreads rapidly, reaching pandemic status, causing the collapse of numerous health systems, and a strong economic and social impact. The treatment so far has not been well established and there are several clinical trials testing known drugs that have antiviral activity, due to the urgency that the global situation imposes. Drugs with specific mechanisms of action can take years to be discovered, while vaccines may also take a long time to be widely distributed while new virus variants emerge. Thus, drug repositioning has been shown to be a good strategy for defining new therapeutic approaches. Studies of the effect of enriched heparin in the replication of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) in vitro assays justify the advance for clinical tests. METHODS AND ANALYSIS: A phase I/II triple-blind parallel clinical trial will be conducted. Fifty participants with radiological diagnosis of grade IIA pneumonia will be selected, which will be allocated in 2 arms. Participants allocated in Group 1 (placebo) will receive nebulized 0.9% saline. Participants allocated in Group 2 (intervention) will receive nebulized enriched heparin (2.5 mg/mL 0.9% saline). Both groups will receive the respective solutions on a 4/4 hour basis, for 7 days. The main outcomes of interest will be safety (absence of serious adverse events) and efficacy (measured by the viral load).Protocols will be filled on a daily basis, ranging from day 0 (diagnosis) until day 8.


Subject(s)
COVID-19 Drug Treatment , Heparin/therapeutic use , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Humans , Randomized Controlled Trials as Topic , Saline Solution , Treatment Outcome
5.
Transfusion ; 61(12): 3455-3467, 2021 12.
Article in English | MEDLINE | ID: covidwho-1480229

ABSTRACT

BACKGROUND: COVID-19 high-titer CCP selection is a concern, because neutralizing antibody (nAb) testing requires sophisticated labs and methods. Surrogate tests are an alternative for measuring nAb levels in plasma bags, including those that are pathogen-reduced. STUDY DESIGN/METHODS: We studied a panel consisting of 191 samples from convalescent donors tested by nAb (CPE-VNT), obtained from 180 CCP donations (collection: March 20-January 21) and 11 negative controls, with a total of 80 and 111 serum and plasma samples (71 amotosalen/UV treated), with nAb titers ranging from negative to 10,240. Samples were blindly tested for several surrogates: one anti-RBD, two anti-spike, and four anti-nucleocapsid tests, either isolated or combined to improve their positive predictive values as predictors of the presence of high-titer nAbs, defined as those with titers ≥160. RESULTS: Except for combined and anti-IgA/M tests, all isolated surrogate tests showed excellent performance for nAb detection: sensitivity (98.3%-100%), specificity (85.7%-100%), PPV (98.9%-100%), NPV (81.3%-100%), and AUC (0.93-0.96), with a variable decrease in sensitivity and considerably lower specificity when using FDA authorization and concomitant nAb titers ≥160. All surrogates had AUCs that were statistically different from CPE-VNT if nAb≥160, including when using combined, orthogonal approaches. CONCLUSIONS: Surrogate tests (isolated or in combination) have an indirect good performance in detecting the presence of nAb, with lower sensitivity and specificity when high nAb titer samples are used, possibly accepting a considerable number of donors whose nAb titers are actually low, which should be evaluated by each laboratory responsible for CCP collection.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19/therapy , Blood Donors , Humans , Immunization, Passive , SARS-CoV-2 , COVID-19 Serotherapy
6.
Sci Rep ; 11(1): 19937, 2021 10 07.
Article in English | MEDLINE | ID: covidwho-1462022

ABSTRACT

The risk of contamination and dissemination by SARS-CoV-2 has a strong link with nasal, oral and pharyngeal cavities. Recently, our research group observed the promising performance of an anionic phthalocyanine derivative (APD) used in a mouthwash protocol without photoexcitation; this protocol improved the general clinical condition of patients infected with SARS-CoV-2. The present two-arm study evaluated in vitro the antiviral activity and cytotoxicity of APD. Additionally, a triple-blind randomized controlled trial was conducted with 41 hospitalized patients who tested positive for COVID-19. All the included patients received World Health Organization standard care hospital treatment (non-intensive care) plus active mouthwash (experimental group AM/n = 20) or nonactive mouthwash (control group NAM/n = 21). The adjunct mouthwash intervention protocol used in both groups consisted one-minute gargling/rinsing / 5 times/day until hospital discharge. Groups were compared considering age, number of comorbidities, duration of symptoms prior admission and length of hospital stay (LOS). The associations between group and sex, age range, presence of comorbidities, admission to Intensive care unit (ICU) and death were also evaluated. The in vitro evaluation demonstrated that APD compound was highly effective for reduction of SARS-CoV-2 viral load in the 1.0 mg/mL (99.96%) to 0.125 mg/mL (92.65%) range without causing cytotoxicity. Regarding the clinical trial, the median LOS of the AM group was significantly shortened (4 days) compared with that of the NAM group (7 days) (p = 0.0314). Additionally, gargling/rinsing with APD was very helpful in reducing the severity of symptoms (no ICU care was needed) compared to not gargling/rinsing with APD (28.6% of the patients in the NAM group needed ICU care, and 50% of this ICU subgroup passed way, p = 0.0207). This study indicated that the mechanical action of the protocol involving mouthwash containing a compound with antiviral effects against SARS-CoV-2 may reduce the symptoms of the patients and the spread of infection. The use of APD in a mouthwash as an adjuvant the hospital COVID-19 treatment presented no contraindication and reduced the hospital stay period.Trial registration: The clinical study was registered at REBEC-Brazilian Clinical Trial Register (RBR-58ftdj).


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Isoindoles/therapeutic use , Mouthwashes/therapeutic use , Adult , Aged , Animals , Antiviral Agents/chemistry , Brazil/epidemiology , COVID-19/epidemiology , Chlorocebus aethiops , Female , Humans , Isoindoles/chemistry , Length of Stay , Male , Middle Aged , Mouthwashes/chemistry , SARS-CoV-2/drug effects , Vero Cells
7.
Transfusion ; 61(8): 2295-2306, 2021 08.
Article in English | MEDLINE | ID: covidwho-1282041

ABSTRACT

BACKGROUND: Current evidence regarding COVID-19 convalescent plasma (CCP) transfusion practices is limited and heterogeneous. We aimed to determine the impact of the use of CCP transfusion in patients with previous circulating neutralizing antibodies (nAbs) in COVID-19. METHODS: Prospective cohort including 102 patients with COVID-19 transfused with ABO compatible CCP on days 0-2 after enrollment. Clinical status of patients was assessed using the adapted World Health Organization (WHO) ordinal scale on days 0, 5, and 14. The nAbs titration was performed using the cytopathic effect-based virus neutralization test with SARS-CoV-2 (GenBank MT126808.1). The primary outcome was clinical improvement on day 14, defined as a reduction of at least two points on the adapted WHO ordinal scale. Secondary outcomes were the number of intensive care unit (ICU)-free days and the number of invasive mechanical ventilation-free days. RESULTS: Both nAbs of CCP units transfused (p < 0.001) and nAbs of patients before CCP transfusions (p = 0.028) were associated with clinical improvements by day 14. No significant associations between nAbs of patients or CCP units transfused were observed in the number of ICU or mechanical ventilation-free days. Administration of CCP units after 10 days of symptom onset resulted in a decrease in ICU-free days (p < 0.001) and mechanical ventilation-free days (p < 0.001). CONCLUSION: Transfusion of high titer nAbs CCP units may be a determinant in clinical strategies against COVID-19. We consider these data as useful parameters to guide future CCP transfusion practices.


Subject(s)
Antibodies, Neutralizing/blood , COVID-19/therapy , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Blood Donors , COVID-19/blood , COVID-19/immunology , Cohort Studies , Female , Humans , Immunization, Passive/methods , Male , Middle Aged , SARS-CoV-2/immunology , COVID-19 Serotherapy
8.
Vox Sang ; 116(5): 557-563, 2021 May.
Article in English | MEDLINE | ID: covidwho-1241037

ABSTRACT

BACKGROUND: Blood groups and anti-A isohemagglutinin may be involved in susceptibility to SARS-CoV-2 infection. MATERIALS AND METHODS: We retrospectively studied 268 COVID-19 convalescent plasma donors and 162 COVID-19 inpatients (total 430 subjects, confirmed by RT-PCR) and 2,212 healthy volunteer first-time blood donors as a control group. These were further divided into two groups: those with anti-A (blood types O and B) and those without it (types A and AB). Titres of nucleoproteins, and neutralizing SARS-CoV-2 antibody were measured in the convalescent plasma donors and inpatients. Multivariate logistic regression and non-parametric tests were applied. RESULTS: Persons having types O or B showed less infection prevalence than those of types A or AB (OR = 0·62, 95% CI 0·50-0·78; P < 0·001), but there was no difference when COVID-19 inpatients were analysed. Immunoglobulins M, G and A were lower in COVID-19 subjects of types O or B group than those of A or AB (0·16 vs. 0·19; P = 0·03, 2·11 vs. 2·55; P = 0·02, 0·23 vs. 0·32; P = 0·03, respectively). CONCLUSION: In this retrospective cohort, COVID-19 individuals were less likely to belong to blood types O and B, and also had lower SARS-CoV-2 antibody titres than A and AB individuals. COVID-19 severity did not associate with the blood groups.


Subject(s)
ABO Blood-Group System/blood , Antibodies, Viral/blood , COVID-19/blood , COVID-19/therapy , Adult , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Hemagglutinins/immunology , Humans , Immunization, Passive , Male , Middle Aged , SARS-CoV-2/immunology , COVID-19 Serotherapy
9.
Transfusion ; 61(4): 1181-1190, 2021 04.
Article in English | MEDLINE | ID: covidwho-1045671

ABSTRACT

BACKGROUND: The efficacy of convalescent plasma (CP), an alternative for the treatment of COVID-19, depends on high titers of neutralizing antibodies (nAbs), but assays for quantifying nAbs are not widely available. Our goal was to develop a strategy to predict high titers of nAbs based on the results of anti-SARS-CoV-2 immunoassays and the clinical characteristics of CP donors. STUDY DESIGN AND METHODS: A total of 214 CP donors were enrolled and tested for the presence of anti-SARS-CoV-2 antibodies (IgG) using two commercial immunoassays: EUROIMMUN (ELISA) and Abbott (Chemiluminescence). Quantification of nAbs was performed using the Cytopathic Effect-based Virus Neutralization test. Three criteria for identifying donors with nAbs ≥ 1:160 were tested: - C1: Curve ROC; - C2: Conditional decision tree considering only the IA results and - C3: Conditional decision tree including both the IA results and the clinical variables. RESULTS: The performance of the immunoassays was similar referring to both S/CO and predictive value for identifying nAbs titers ≥1:160. Regarding the studied criteria for identifying CP donors with high nAbs titers: (a) C1 showed 76.1% accuracy if S/CO = 4.65, (b) C2 presented 76.1% accuracy if S/CO ≥4.57 and (c) C3 had 71.6% accuracy if S/CO was ≥4.57 or if S/CO was between 2.68-4.57 and the last COVID-19-related symptoms were recent (within 19 days). CONCLUSION: SARS-CoV-2 IgG immunoassays (S/CO) can be used to predict high anti-SARS-CoV-2 nAbs titers. This study has proposed different criteria for identifying donors with ≥1:160 nAbs titers, all with high efficacy.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Serological Testing , COVID-19 , Immunoglobulin G/blood , Adult , COVID-19/blood , COVID-19/diagnosis , Female , Humans , Immunoassay , Male , Middle Aged , SARS-CoV-2
10.
Mem. Inst. Oswaldo Cruz ; 115:e200342-e200342, 2020.
Article in English | LILACS (Americas) | ID: grc-742153

ABSTRACT

BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was confirmed in Brazil in February 2020, the first cases were followed by an increase in the number of cases throughout the country, resulting in an important public health crisis that requires fast and coordinated responses. OBJECTIVES The objective of this work is to describe the isolation and propagation properties of SARS-CoV-2 isolates from the first confirmed cases of coronavirus disease 2019 (COVID-19) in Brazil. METHODS After diagnosis in patients that returned from Italy to the São Paulo city in late February by RT-PCR, SARS-CoV-2 isolates were obtained in cell cultures and characterised by full genome sequencing, electron microscopy and in vitro replication properties. FINDINGS The virus isolate was recovered from nasopharyngeal specimen, propagated in Vero cells (E6, CCL-81 and hSLAM), with clear cytopathic effects, and characterised by full genome sequencing, electron microscopy and in vitro replication properties. Virus stocks - viable (titre 2.11 × 106 TCID50/mL, titre 1.5 × 106 PFUs/mL) and inactivated from isolate SARS.CoV2/SP02.2020.HIAE.Br were prepared and set available to the public health authorities and the scientific community in Brazil and abroad. MAIN CONCLUSION We believe that the protocols for virus growth and studies here described and the distribution initiative may constitute a viable model for other developing countries, not only to help a rapid effective pandemic response, but also to facilitate and support basic scientific research.

11.
Mem Inst Oswaldo Cruz ; 115: e200342, 2020.
Article in English | MEDLINE | ID: covidwho-895110

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was confirmed in Brazil in February 2020, the first cases were followed by an increase in the number of cases throughout the country, resulting in an important public health crisis that requires fast and coordinated responses. OBJECTIVES: The objective of this work is to describe the isolation and propagation properties of SARS-CoV-2 isolates from the first confirmed cases of coronavirus disease 2019 (COVID-19) in Brazil. METHODS: After diagnosis in patients that returned from Italy to the São Paulo city in late February by RT-PCR, SARS-CoV-2 isolates were obtained in cell cultures and characterised by full genome sequencing, electron microscopy and in vitro replication properties. FINDINGS: The virus isolate was recovered from nasopharyngeal specimen, propagated in Vero cells (E6, CCL-81 and hSLAM), with clear cytopathic effects, and characterised by full genome sequencing, electron microscopy and in vitro replication properties. Virus stocks - viable (titre 2.11 × 106 TCID50/mL, titre 1.5 × 106 PFUs/mL) and inactivated from isolate SARS.CoV2/SP02.2020.HIAE.Br were prepared and set available to the public health authorities and the scientific community in Brazil and abroad. MAIN CONCLUSION: We believe that the protocols for virus growth and studies here described and the distribution initiative may constitute a viable model for other developing countries, not only to help a rapid effective pandemic response, but also to facilitate and support basic scientific research.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections , Pandemics , Pneumonia, Viral , Animals , Brazil , COVID-19 , Chlorocebus aethiops , Humans , SARS-CoV-2 , Vero Cells
12.
Pediatr Infect Dis J ; 39(10): e321-e324, 2020 10.
Article in English | MEDLINE | ID: covidwho-766876

ABSTRACT

Although first considered a benign infection, recent studies have disclosed severe and potentially lethal inflammatory manifestations of COVID-19 in children. We report the case of a 4-year-old child with a post-infectious multisystem inflammatory syndrome associated with COVID-19, with a Kawasaki-like shock and prominent neurologic features, for whom a cytokine storm and reduced brain-derived neurotrophic factor were well documented.


Subject(s)
Coronavirus Infections/complications , Pneumonia, Viral/complications , Systemic Inflammatory Response Syndrome/complications , Antibodies, Viral/blood , Betacoronavirus/immunology , Brain-Derived Neurotrophic Factor/blood , COVID-19 , Child, Preschool , Cytokines/blood , Female , Humans , Immunoglobulin G/blood , Inflammation , Pandemics , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/pathology , Systemic Inflammatory Response Syndrome/virology
14.
Braz J Microbiol ; 51(3): 1117-1123, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-695574

ABSTRACT

In March 2020, WHO declared a pandemic state due to SARS-CoV-2 having spread. TaqMan-based real-time RT-qPCR is currently the gold standard for COVID-19 diagnosis. However, it is a high-cost assay, inaccessible for the majority of laboratories around the world, making it difficult to diagnose on a large scale. The objective of this study was to standardize lower cost molecular methods for SARS-CoV-2 identification. E gene primers previously determined for TaqMan assays by Colman et al. (2020) were adapted in SYBR Green assay and RT-PCR conventional. The cross-reactivity test was performed with 17 positive samples for other respiratory viruses, and the sensibility test was performed with 8 dilutions (10 based) of SARS-CoV-2 isolated and 63 SARS-CoV-2-positive samples. The SYBR Green assays and conventional RT-PCR have not shown amplification of the 17 respiratory samples positives for other viruses. The SYBR Green-based assay was able to detect all 8 dilutions of the isolate. The conventional PCR detected until 107 dilution, both assays detected the majority of the 63 samples, 98.42% of positivity in SYBR Green, and 93% in conventional PCR. The average Ct variation between SYBR Green and TaqMan was 1.92 and the highest Ct detected by conventional PCR was 35.98. Both of the proposed assays are less sensitive than the current gold standard; however, our data shows a low sensibility variation, suggesting that these methods could be used by laboratories as a lower cost molecular method for SARS-CoV-2 diagnosis.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , Fluorescent Dyes/economics , Organic Chemicals/economics , Pneumonia, Viral/diagnosis , Real-Time Polymerase Chain Reaction/economics , Adolescent , Adult , Animals , Benzothiazoles , Betacoronavirus/genetics , COVID-19 , Child , Chlorocebus aethiops , Coronavirus Infections/economics , Cross Reactions , Diamines , Humans , Middle Aged , Nasopharynx/virology , Oropharynx/virology , Pandemics/economics , Pneumonia, Viral/economics , Quinolines , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2 , Sensitivity and Specificity , Vero Cells , Young Adult
15.
Microb Ecol ; 79(1): 203-212, 2020 Jan.
Article in English | MEDLINE | ID: covidwho-326842

ABSTRACT

Bats are flying mammals distributed worldwide known to host several types of Coronavirus (CoV). Since they were reported as the probable source of spillover of highly pathogenic CoV into the human population, investigating the circulation of this virus in bats around the world became of great importance. We analyzed samples from 103 bats from two distinct regions in Brazil. Coronavirus from the Alphacoronavirus genus was detected in 12 animals, 11 from São José do Rio Preto-SP region and 1 from Barreiras-BA region, resulting in a prevalence of 17.18% and 2.56% respectively. The virus was detected not only in intestines but also in lungs and liver. Phylogenetic analysis based on nsP12 genomic region suggests that the sequences group according to host family and sampling location. Studies on the circulation of these viruses in bats remain important to understand the ecology and evolutionary relationship of these pathogens.


Subject(s)
Alphacoronavirus/isolation & purification , Chiroptera/virology , Alphacoronavirus/classification , Alphacoronavirus/genetics , Animals , Biological Evolution , Brazil , Genome, Viral , Intestines/virology , Liver/virology , Lung/virology , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL