Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Clin Med Res ; 13(4): 230-236, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1225970

ABSTRACT

BACKGROUND: Given the high prevalence of obesity around the globe, patients with coronavirus disease 2019 (COVID-19) are at an increased risk of devastating complications. METHODS: A retrospective cohort study was performed to determine the association of basal metabolic index (body mass index (BMI)) with the need for invasive mechanical ventilation (IMV), dialysis, upgrade to an intensive care unit (ICU) and mortality. Independent t-test and multivariate logistic regression analysis were performed to calculate mean differences and adjusted odds ratios (aORs) with its 95% confidence interval (CI), respectively. RESULTS: A total of 176 consecutive patients with confirmed COVID-19 diagnosis were included. The mean age was 62.2 years, with 51% being male patients. The mean BMI for non-surviving patients was significantly higher compared to patients surviving on the seventh day of hospitalization (35 vs. 30 kg/m2, P = 0.022). Similarly, patients requiring IMV had a higher BMI (33 vs. 29, P = 0.002) compared to non-intubated patients. The unadjusted OR for patients with a higher BMI requiring IMV (56% vs. 28%, OR: 3.3, 95% CI: 1.6 - 7.0, P = 0.002) and upgrade to ICU (46% vs. 28%, OR; 2.2, 1.07 - 4.6, P = 0.04) were significantly higher compared to patients with a lower BMI. Similarly, patients with a higher BMI had higher in-hospital mortality (21% vs. 9%, OR: 3.2, 95% CI: 1.3 - 8.2, P = 0.01) compared to patients with a normal BMI. Despite a numerical advantage in the lower BMI group, there was no significant difference between the two groups in terms of the need for dialysis (5% vs. 13%, OR: 3.8, 13% vs. 4%, 1.1 - 14.1, P = 0.07). aORs controlled for baseline comorbidities and medications mirrored the overall results, except for the need to upgrade to ICU. CONCLUSIONS: In patients with confirmed COVID-19, morbid obesity serves as an independent risk factor of high in-hospital mortality and the need for IMV.

2.
J Community Hosp Intern Med Perspect ; 11(1): 17-22, 2021 Jan 26.
Article in English | MEDLINE | ID: covidwho-1054220

ABSTRACT

Introduction: COVID-19 induces a pro-thrombotic state as evidenced by microvascular thrombi in the renal and pulmonary vasculature. Therapeutic anticoagulation in COVID-19 has been debated and data remain anecdotal. Hypothesis: We hypothesize that therapeutic anticoagulation is associated with a reduction in in-hospital mortality, upgrade to intensive care unit, invasive mechanical ventilation, and acute renal failure necessitating dialysis by decreasing the over-all clot burden. Methods: A retrospective cohort study was done to determine the impact of therapeutic anticoagulation in hospitalized COVID-19 patients. Independent t-test and multivariate logistic regression analysis were performed to calculate mean differences and adjusted odds ratios (aOR) with its 95% confidence interval (CI) respectively. Results: A total of 176 hospitalized COVID-19 patients were divided into two groups, therapeutic anticoagulation and prophylactic anticoagulation. The mean age, baseline comorbidities and other medications used during hospitalization were similar in both groups. The aOR for in-hospital mortality (OR 3.05, 95% CI 1.15-8.10, p = 0.04), upgrade to intensive care (OR 3.08, 95% CI 1.43-6.64, p = 0.006) and invasive mechanical ventilation (OR 4.27, 95% CI 1.95-9.34, p = 0.00) were significantly lower while there was no statistically significant difference in the rate of developing acute renal failure (OR 1.87 95% CI 0.46-7.63, p = 0.64) between two groups. Conclusions: In patients with COVID-19, therapeutic anticoagulation offers a significant reduction in the rate of in-hospital mortality, upgrade to intensive medical care, and invasive mechanical ventilation. It should be preferred over prophylactic anticoagulation in COVID-19 patients unless randomized controlled trials prove otherwise.

3.
J Community Hosp Intern Med Perspect ; 10(5): 402-408, 2020 Sep 03.
Article in English | MEDLINE | ID: covidwho-772817

ABSTRACT

BACKGROUND: Systemic inflammation elicited by a cytokine storm is considered a hallmark of coronavirus disease 2019 (COVID-19). This study aims to assess the clinical utility of the C-reactive protein (CRP) and D-Dimer levels for predicting in-hospital outcomes in COVID-19. METHODS: A retrospective cohort study was performed to determine the association of CRP and D-Dimer with the need for invasive mechanical ventilation (IMV), dialysis, upgrade to an intensive care unit (ICU) and mortality. Independent t-test and multivariate logistic regression analysis were performed to calculate mean differences and adjusted odds ratios (aOR) with its 95% confidence interval (CI), respectively. RESULTS: A total of 176 patients with confirmed COVID-19 diagnosis were included. On presentation, the unadjusted odds for the need of IMV (OR 2.5, 95% CI 1.3-4.8, p = 0.012) and upgrade to ICU (OR 3.2, 95% CI 1.6-6.5, p = 0.002) were significantly higher for patients with CRP (>101 mg/dl). Similarly, the unadjusted odds of in-hospital mortality were significantly higher in patients with high CRP (>101 mg/dl) and high D-Dimer (>501 ng/ml), compared to corresponding low CRP (<100 mg/dl) and low D-Dimer (<500 ng/ml) groups on day-7 (OR 3.5, 95% CI 1.2-10.5, p = 0.03 and OR 10.0, 95% CI 1.2-77.9, p = 0.02), respectively. Both high D-Dimer (>501 ng/ml) and high CRP (>101 mg/dl) were associated with increased need for upgrade to the ICU and higher requirement for IMV on day-7 of hospitalization. A multivariate regression model mirrored the overall unadjusted trends except that adjusted odds for IMV were high in the high CRP group on day 7 (aOR 2.5, 95% CI 1.05-6.0, p = 0.04). CONCLUSION: CRP value greater than 100 mg/dL and D-dimer levels higher than 500 ng/ml during hospitalization might predict higher odds of in-hospital mortality. Higher levels at presentation might indicate impending clinical deterioration and the need for IMV.

4.
Cureus ; 12(8): e9866, 2020 Aug 19.
Article in English | MEDLINE | ID: covidwho-740571

ABSTRACT

Hamman-Rich syndrome is a rapidly progressive interstitial lung disease with acute respiratory distress syndrome physiology. It carries a grave prognosis and a high early mortality rate. It is often distinguished from other similar pulmonary pathologies based on the clinical course, laboratory findings, bronchoalveolar lavage testing, and pathology report. We detail a 77-year-old lady with no prior pulmonary disease, smoking history, or occupational and environmental exposures present to the emergency department found to be in acute hypoxic respiratory failure with impressive progressive radiographic findings. The presumptive diagnosis of Hamman-Rich syndrome was made based on a combination of factors after ruling out other similar clinical entities, especially in the setting of an ongoing COVID-19 pandemic.

5.
J Clin Med Res ; 12(7): 415-422, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-643282

ABSTRACT

BACKGROUND: Systemic inflammation elicited by a cytokine storm is considered a hallmark of coronavirus disease 2019 (COVID-19). This study aims to assess the validity and clinical utility of the lymphocyte-to-C-reactive protein (CRP) ratio (LCR), typically used for gastric carcinoma prognostication, versus the neutrophil-to-lymphocyte ratio (NLR) for predicting in-hospital outcomes in COVID-19. METHODS: A retrospective cohort study was performed to determine the association of LCR and NLR with the need for invasive mechanical ventilation (IMV), dialysis, upgrade to an intensive care unit (ICU) and mortality. Independent t-test and multivariate logistic regression analysis were performed to calculate mean differences and adjusted odds ratios (aORs) with its 95% confidence interval (CI), respectively. RESULTS: The mean age for NLR patients was 63.6 versus 61.6, and for LCR groups, it was 62.6 versus 63.7 years, respectively. The baseline comorbidities across all groups were comparable except that the higher LCR group had female predominance. The mean NLR was significantly higher for patients who died during hospitalization (19 vs. 7, P ≤ 0.001) and those requiring IMV (12 vs. 7, P = 0.01). Compared to alive patients, a significantly lower mean LCR was observed in patients who did not survive hospitalization (1,011 vs. 632, P = 0.04). For patients with a higher NLR (> 10), the unadjusted odds of mortality (odds ratios (ORs) 11.0, 3.6 - 33.0, P < 0.0001) and need for IMV (OR 3.3, 95% CI 1.4 - 7.7, P = 0.008) were significantly higher compared to patients with lower NLR. By contrast, for patients with lower LCR (< 100), the odds of in-hospital all-cause mortality were significantly higher compared to patients with a higher LCR (OR 0.2, 0.06 - 0.47, P = 0.001). The aORs controlled for baseline comorbidities and medications mirrored the overall results, indicating a genuinely significant correlation between these biomarkers and outcomes. CONCLUSIONS: A high NLR and decreased LCR value predict higher odds of in-hospital mortality. A high LCR at presentation might indicate impending clinical deterioration and the need for IMV.

SELECTION OF CITATIONS
SEARCH DETAIL