Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Sci Transl Med ; 14(641): eabn6150, 2022 04 20.
Article in English | MEDLINE | ID: covidwho-1807307

ABSTRACT

Breakthrough infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have been reported frequently in vaccinated individuals with waning immunity. In particular, a cluster of over 1000 infections with the SARS-CoV-2 delta variant was identified in a predominantly fully vaccinated population in Provincetown, Massachusetts in July 2021. In this study, vaccinated individuals who tested positive for SARS-CoV-2 (n = 16) demonstrated substantially higher serum antibody responses than vaccinated individuals who tested negative for SARS-CoV-2 (n = 23), including 32-fold higher binding antibody titers and 31-fold higher neutralizing antibody titers against the SARS-CoV-2 delta variant. Vaccinated individuals who tested positive also showed higher mucosal antibody responses in nasal secretions and higher spike protein-specific CD8+ T cell responses in peripheral blood than did vaccinated individuals who tested negative. These data demonstrate that fully vaccinated individuals developed robust anamnestic antibody and T cell responses after infection with the SARS-CoV-2 delta variant. Moreover, these findings suggest that population immunity will likely increase over time by a combination of widespread vaccination and breakthrough infections.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Antibody Formation , Humans
2.
Pediatrics ; 149(5)2022 05 01.
Article in English | MEDLINE | ID: covidwho-1674088

ABSTRACT

BACKGROUND AND OBJECTIVES: Mandatory quarantine upon exposure to coronavirus disease 2019 (COVID-19) results in a substantial number of lost days of school. We hypothesized that implementation of a state-wide test-to-stay (TTS) program would allow more students to participate in in-person learning, and not cause additional clusters of COVID-19 cases due to in-school transmission. METHODS: For the 2020-2021 academic year, Massachusetts implemented an opt-in TTS program, in which students exposed to COVID-19 in school are tested each school day with a rapid antigen test. If negative, students may participate in school-related activities that day. Testing occurs daily for a duration of 7 calendar days after exposure. Here, we report the results from the first 13 weeks of the program. RESULTS: A total of 2298 schools signed up for TTS, and 504 167 individuals out of a total population of 860 457 consented. During the first 13 weeks with complete data, 1959 schools activated the program at least once for 102 373 individual, exposed students. Out of 328 271 tests performed, 2943 positive cases were identified (per person positivity rate, 2.9%, 95% confidence interval, 2.8-3.0). A minimum of 325 328 and a maximum of 497 150 days of in-person school were saved through participation in the program. CONCLUSIONS: Daily, rapid on-site antigen testing is a safe and feasible alternative to mandatory quarantine and can be used to maximize safe in-person learning time during the pandemic.


Subject(s)
COVID-19 , Quarantine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Testing , Humans , SARS-CoV-2 , Schools
3.
Nat Med ; 28(5): 1083-1094, 2022 05.
Article in English | MEDLINE | ID: covidwho-1671607

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has demonstrated a clear need for high-throughput, multiplexed and sensitive assays for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory viruses and their emerging variants. Here, we present a cost-effective virus and variant detection platform, called microfluidic Combinatorial Arrayed Reactions for Multiplexed Evaluation of Nucleic acids (mCARMEN), which combines CRISPR-based diagnostics and microfluidics with a streamlined workflow for clinical use. We developed the mCARMEN respiratory virus panel to test for up to 21 viruses, including SARS-CoV-2, other coronaviruses and both influenza strains, and demonstrated its diagnostic-grade performance on 525 patient specimens in an academic setting and 166 specimens in a clinical setting. We further developed an mCARMEN panel to enable the identification of 6 SARS-CoV-2 variant lineages, including Delta and Omicron, and evaluated it on 2,088 patient specimens with near-perfect concordance to sequencing-based variant classification. Lastly, we implemented a combined Cas13 and Cas12 approach that enables quantitative measurement of SARS-CoV-2 and influenza A viral copies in samples. The mCARMEN platform enables high-throughput surveillance of multiple viruses and variants simultaneously, enabling rapid detection of SARS-CoV-2 variants.


Subject(s)
COVID-19 , Influenza, Human , COVID-19/diagnosis , Humans , Microfluidics , SARS-CoV-2/genetics
5.
Open forum infectious diseases ; 8(Suppl 1):S695-S695, 2021.
Article in English | EuropePMC | ID: covidwho-1565006

ABSTRACT

Background We developed a syndromic algorithm for COVID-19 like illness (CLI) to provide supplementary surveillance data on COVID-19 activity. Methods The CLI algorithm was developed using the Electronic Medical Record Support for Public Health platform (esphealth.org) and data from five clinical practice groups in Massachusetts that collectively care for 25% of the state’s population. Signs and symptoms of CLI were identified using ICD-10 diagnosis codes and measured temperature. The algorithm originally included three categories: Category 1 required codes for coronavirus infection and lower respiratory tract infections (LRTI);Category 2 required an LRTI-related diagnosis and fever;Category 3 required an upper or lower RTI and fever. The three categories mirrored statewide laboratory-confirmed case trends during spring and summer 2020 but did not detect the increase in late fall. We hypothesized this was due to the requirements for fever and LRTI. Therefore, we added three new categories defined by milder symptoms without fever: Category 4 requires LRTI-related diagnoses only;Category 5 requires upper or lower RTI or olfactory/taste disorders;and Category 6 requires at least one sign of CLI not identified by another category. Results The six-category algorithm detected the initial surge in April 2020, the summer lull, and the second surge in late fall (see figure). Category 1 cases were not identified until mid-March, which coincides with the first laboratory-confirmed cases in Massachusetts. Categories 2 and 3, which required fever, were prominent during the initial surge but declined over time. Category 5, the broadest category, declined during February and March 2020, likely capturing the end of the influenza season, and successfully detected the spring surge and fall resurgence. Weekly number of COVID-19 like illnesses by category, February 2, 2020 through May 8, 2021 Conclusion A syndromic definition that included mild upper RTI and olfactory/taste disorders, with or without fever or LRTI, mirrored changes in laboratory-confirmed COVID-19 cases better than definitions that required fever and LRTI. This suggests a shift in medically attended care and/or coding practices during initial vs subsequent surges of COVID-19, and the importance of using a broad definition of CLI for ongoing surveillance. Disclosures Michael Klompas, MD, MPH, UpToDate (Other Financial or Material Support, Chapter Author)

6.
Clin Infect Dis ; 73(9): 1693-1695, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1501057

ABSTRACT

We describe 3 instances of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission despite medical masks and eye protection, including transmission despite the source person being masked, transmission despite the exposed person being masked, and transmission despite both parties being masked. Whole genome sequencing confirmed perfect homology between source and exposed persons' viruses in all cases.


Subject(s)
COVID-19 , SARS-CoV-2 , Delivery of Health Care , Humans , Masks
7.
Science ; 371(6529)2021 02 05.
Article in English | MEDLINE | ID: covidwho-1388436

ABSTRACT

Analysis of 772 complete severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes from early in the Boston-area epidemic revealed numerous introductions of the virus, a small number of which led to most cases. The data revealed two superspreading events. One, in a skilled nursing facility, led to rapid transmission and significant mortality in this vulnerable population but little broader spread, whereas other introductions into the facility had little effect. The second, at an international business conference, produced sustained community transmission and was exported, resulting in extensive regional, national, and international spread. The two events also differed substantially in the genetic variation they generated, suggesting varying transmission dynamics in superspreading events. Our results show how genomic epidemiology can help to understand the link between individual clusters and wider community spread.


Subject(s)
COVID-19/epidemiology , Genome, Viral , Phylogeny , SARS-CoV-2/genetics , Boston/epidemiology , COVID-19/transmission , Disease Outbreaks , Epidemiological Monitoring , Humans
8.
J Clin Microbiol ; 59(9): e0112321, 2021 08 18.
Article in English | MEDLINE | ID: covidwho-1365138

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) testing is one component of a multilayered mitigation strategy to enable safe in-person school attendance for the K-12 school population. However, costs, logistics, and uncertainty about effectiveness are potential barriers to implementation. We assessed early data from the Massachusetts K-12 public school pooled SARS-CoV2 testing program, which incorporates two novel design elements: in-school "pod pooling" for assembling pools of dry anterior nasal swabs from 5 to 10 individuals and positive pool deconvolution using the BinaxNOW antigen rapid diagnostic test (Ag RDT), to assess the operational and analytical feasibility of this approach. Over 3 months, 187,597 individual swabs were tested across 39,297 pools from 738 schools. The pool positivity rate was 0.8%; 98.2% of pools tested negative and 0.2% inconclusive, and 0.8% of pools submitted could not be tested. Of 310 positive pools, 70.6% had an N1 or N2 probe cycle threshold (CT) value of ≤30. In reflex testing (performed on specimens newly collected from members of the positive pool), 92.5% of fully deconvoluted pools with an N1 or N2 target CT of ≤30 identified a positive individual using the BinaxNOW test performed 1 to 3 days later. However, of 124 positive pools with full reflex testing data available for analysis, 32 (25.8%) of BinaxNOW pool deconvolution testing attempts did not identify a positive individual, requiring additional reflex testing. With sufficient staffing support and low pool positivity rates, pooled sample collection and reflex testing were feasible for schools. These early program findings confirm that screening for K-12 students and staff is achievable at scale with a scheme that incorporates in-school pooling, primary testing by reverse transcription-PCR (RT-PCR), and Ag RDT reflex/deconvolution testing.


Subject(s)
COVID-19 , RNA, Viral , Humans , Molecular Diagnostic Techniques , SARS-CoV-2 , Schools , Specimen Handling
9.
MMWR Morb Mortal Wkly Rep ; 70(31): 1059-1062, 2021 Aug 06.
Article in English | MEDLINE | ID: covidwho-1344580

ABSTRACT

During July 2021, 469 cases of COVID-19 associated with multiple summer events and large public gatherings in a town in Barnstable County, Massachusetts, were identified among Massachusetts residents; vaccination coverage among eligible Massachusetts residents was 69%. Approximately three quarters (346; 74%) of cases occurred in fully vaccinated persons (those who had completed a 2-dose course of mRNA vaccine [Pfizer-BioNTech or Moderna] or had received a single dose of Janssen [Johnson & Johnson] vaccine ≥14 days before exposure). Genomic sequencing of specimens from 133 patients identified the B.1.617.2 (Delta) variant of SARS-CoV-2, the virus that causes COVID-19, in 119 (89%) and the Delta AY.3 sublineage in one (1%). Overall, 274 (79%) vaccinated patients with breakthrough infection were symptomatic. Among five COVID-19 patients who were hospitalized, four were fully vaccinated; no deaths were reported. Real-time reverse transcription-polymerase chain reaction (RT-PCR) cycle threshold (Ct) values in specimens from 127 vaccinated persons with breakthrough cases were similar to those from 84 persons who were unvaccinated, not fully vaccinated, or whose vaccination status was unknown (median = 22.77 and 21.54, respectively). The Delta variant of SARS-CoV-2 is highly transmissible (1); vaccination is the most important strategy to prevent severe illness and death. On July 27, CDC recommended that all persons, including those who are fully vaccinated, should wear masks in indoor public settings in areas where COVID-19 transmission is high or substantial.* Findings from this investigation suggest that even jurisdictions without substantial or high COVID-19 transmission might consider expanding prevention strategies, including masking in indoor public settings regardless of vaccination status, given the potential risk of infection during attendance at large public gatherings that include travelers from many areas with differing levels of transmission.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Crowding , Disease Outbreaks , Adolescent , Adult , Aged , COVID-19 Vaccines/administration & dosage , Child , Child, Preschool , Female , Humans , Infant , Male , Massachusetts/epidemiology , Middle Aged , Young Adult
10.
Open Forum Infect Dis ; 8(7): ofab243, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1305435

ABSTRACT

BACKGROUND: To facilitate deployment of point-of-care testing for severe acute respiratory syndrome coronavirus 2, we evaluated the Access Bio CareStart COVID-19 Antigen test in a high-throughput, drive-through, free community testing site using anterior nasal (AN) swab reverse-transcription polymerase chain reaction (RT-PCR) for clinical testing. METHODS: Consenting symptomatic and asymptomatic children (≤18 years) and adults received dual AN swabs. CareStart testing was performed with temperature/humidity monitoring. All tests had 2 independent reads to assess interoperator agreement. Patients with positive CareStart results were called and instructed to isolate pending RT-PCR results. The paired RT-PCR result was the reference for sensitivity and specificity calculations. RESULTS: Of 1603 participants, 1245 adults and 253 children had paired RT-PCR/CareStart results and complete symptom data. Eighty-three percent of adults and 87% of children were asymptomatic. CareStart sensitivity/specificity were 84.8% (95% confidence interval [CI], 71.1-93.7)/97.2% (95% CI, 92.0-99.4) and 85.7% (95% CI, 42.1-99.6)/89.5% (95% CI, 66.9-98.7) in adults and children, respectively, within 5 days of symptoms. Sensitivity/specificity were 50.0% (95% CI, 41.0-59.0)/99.1% (95% CI, 98.3-99.6) in asymptomatic adults and 51.4% (95% CI, 34.4-68.1)/97.8% (95% CI, 94.5-99.4) in asymptomatic children. Sensitivity in all 234 RT-PCR-positive people was 96.3% with cycle threshold (Ct) ≤25, 79.6% with Ct ≤30, and 61.4% with Ct ≤35. All 21 false-positive CareStart tests had faint but normal bands. Interoperator agreement was 99.5%. Operational challenges included identification of faint test bands and inconsistent swab elution volumes. CONCLUSIONS: CareStart had high sensitivity in people with Ct ≤25 and moderate sensitivity in symptomatic people overall. Specificity was unexpectedly lower in symptomatic versus asymptomatic people. Excellent interoperator agreement was observed, but operational challenges indicate that operator training is warranted.

11.
J Clin Microbiol ; 59(5)2021 04 20.
Article in English | MEDLINE | ID: covidwho-1195809

ABSTRACT

Rapid diagnostic tests (RDTs) for SARS-CoV-2 antigens (Ag) that can be performed at point of care (POC) can supplement molecular testing and help mitigate the COVID-19 pandemic. Deployment of an Ag RDT requires an understanding of its operational and performance characteristics under real-world conditions and in relevant subpopulations. We evaluated the Abbott BinaxNOW COVID-19 Ag card in a high-throughput, drive-through, free community testing site in Massachusetts using anterior nasal (AN) swab reverse transcriptase PCR (RT-PCR) for clinical testing. Individuals presenting for molecular testing in two of seven lanes were offered the opportunity to also receive BinaxNOW testing. Dual AN swabs were collected from symptomatic and asymptomatic children (≤18 years of age) and adults. BinaxNOW testing was performed in a testing pod with temperature/humidity monitoring. One individual performed testing and official result reporting for each test, but most tests had a second independent reading to assess interoperator agreement. Positive BinaxNOW results were scored as faint, medium, or strong. Positive BinaxNOW results were reported to patients by phone, and they were instructed to isolate pending RT-PCR results. The paired RT-PCR result was the reference for sensitivity and specificity calculations. Of 2,482 participants, 1,380 adults and 928 children had paired RT-PCR/BinaxNOW results and complete symptom data. In this study, 974/1,380 (71%) adults and 829/928 (89%) children were asymptomatic. BinaxNOW had 96.5% (95% confidence interval [CI], 90.0 to 99.3) sensitivity and 100% (95% CI, 98.6 to 100.0) specificity in adults within 7 days of symptoms and 84.6% (95% CI, 65.1 to 95.6) sensitivity and 100% (95% CI, 94.5 to 100.0) specificity in children within 7 days of symptoms. Sensitivity and specificity in asymptomatic adults were 70.2% (95% CI, 56.6 to 81.6) and 99.6% (95% CI, 98.9 to 99.9), respectively, and in asymptomatic children, they were 65.4% (95% CI, 55.6 to 74.4) and 99.0% (95% CI, 98.0 to 99.6), respectively. By cycle threshold (CT ) value cutoff, sensitivity in all subgroups combined (n = 292 RT-PCR-positive individuals) was 99.3% with CT values of ≤25, 95.8% with CT values of ≤30, and 81.2% with CT values of ≤35. Twelve false-positive BinaxNOW results (out of 2,308 tests) were observed; in all 12, the test bands were faint but otherwise normal and were noted by both readers. One invalid BinaxNOW result was identified. Interoperator agreement (positive versus negative BinaxNOW result) was 100% (n = 2,230/2,230 double reads). Each operator was able to process 20 RDTs per hour. In a separate set of 30 specimens (from individuals with symptoms ≤7 days) run at temperatures below the manufacturer's recommended range (46 to 58.5°F), sensitivity was 66.7% and specificity 95.2%. BinaxNOW had very high specificity in both adults and children and very high sensitivity in newly symptomatic adults. Overall, 95.8% sensitivity was observed with CT values of ≤30. These data support public health recommendations for use of the BinaxNOW test in adults with symptoms for ≤7 days without RT-PCR confirmation. Excellent interoperator agreement indicates that an individual can perform and read the BinaxNOW test alone. A skilled laboratorian can perform and read 20 tests per hour. Careful attention to temperature is critical.


Subject(s)
Antigens, Viral/isolation & purification , COVID-19 Testing , COVID-19/diagnosis , Mass Screening/methods , Pandemics , Point-of-Care Testing , Adult , Asymptomatic Infections , Child , Community Health Services , Humans , Massachusetts , Sensitivity and Specificity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL