Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Invest Radiol ; 57(1): 71-76, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-20239065

ABSTRACT

PURPOSE: The aim of this study was to investigate the feasibility of measuring early changes in serum cytokine levels after intravenous diethylenetriaminepentaacetic acid (Ca-DTPA) chelation in patients manifesting either gadolinium deposition disease (GDD) or gadolinium storage condition (GSC) and the possible usefulness of this method in further research. METHODS: Four patients with recent-onset GDD (≤1 year) and 2 patients with long-standing GSC (4 and 9 years) underwent chelation with intravenous bolus administration of Ca-DTPA. Multiple blood draws were performed to measure serum cytokines: at T = 0 (before Ca-DTPA injection) and 1, 5, 10, 30, 60 minutes, and 24 hours after Ca-DTPA injection. Patients rated the severity of GDD symptom flare at 24 hours. The 24-hour urine Gd amounts were measured prechelation and for the 24 hours after chelation. Serum samples were analyzed blind to whether patients had GDD or GSC but with knowledge of the time points characterizing each sample. RESULTS: Urine samples for both GDD and GSC patients showed increases in Gd postchelation. All GDD patients experienced flare reactions postchelation; the 2 GSC patients did not. Two cytokines, EGF and sCD40L, peaked at 30 minutes postchelation in at least 4 of the 6 participants. Three cytokines, ENA78/CXCL5, EOTAXIN/CCL11, and LEPTIN, peaked at 24 hours in at least 4 of the 6 participants. Two participants were high outliers for a large number of cytokines across time points. No clear distinction between GDD and GSC was apparent from the cytokine patterns, although differences were present. CONCLUSIONS: This pilot study describes precise temporal resolution (in the range of minutes) after a cytokine-inciting event. Select cytokines exhibited peak values at different time points. At this preliminary stage of investigation, peak cytokine release seems to reflect the amount of Gd mobilized rather than the severity of the patient symptomatic reaction. Too few subjects were studied to support statistical analysis between GDD and GSC groups, although differences were observed through visual data analysis.


Subject(s)
Gadolinium , Organometallic Compounds , Contrast Media , Cytokines , Gadolinium DTPA , Humans , Magnetic Resonance Imaging , Pentetic Acid , Pilot Projects
3.
Cell Rep Med ; 4(6): 101079, 2023 06 20.
Article in English | MEDLINE | ID: covidwho-2322799

ABSTRACT

The IMPACC cohort, composed of >1,000 hospitalized COVID-19 participants, contains five illness trajectory groups (TGs) during acute infection (first 28 days), ranging from milder (TG1-3) to more severe disease course (TG4) and death (TG5). Here, we report deep immunophenotyping, profiling of >15,000 longitudinal blood and nasal samples from 540 participants of the IMPACC cohort, using 14 distinct assays. These unbiased analyses identify cellular and molecular signatures present within 72 h of hospital admission that distinguish moderate from severe and fatal COVID-19 disease. Importantly, cellular and molecular states also distinguish participants with more severe disease that recover or stabilize within 28 days from those that progress to fatal outcomes (TG4 vs. TG5). Furthermore, our longitudinal design reveals that these biologic states display distinct temporal patterns associated with clinical outcomes. Characterizing host immune responses in relation to heterogeneity in disease course may inform clinical prognosis and opportunities for intervention.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Longitudinal Studies , Multiomics , Disease Progression
4.
Nat Commun ; 14(1): 2164, 2023 04 15.
Article in English | MEDLINE | ID: covidwho-2306224

ABSTRACT

Effective humoral immune responses require well-orchestrated B and T follicular helper (Tfh) cell interactions. Whether these interactions are impaired and associated with COVID-19 disease severity is unclear. Here, longitudinal blood samples across COVID-19 disease severity are analysed. We find that during acute infection SARS-CoV-2-specific circulating Tfh (cTfh) cells expand with disease severity. SARS-CoV-2-specific cTfh cell frequencies correlate with plasmablast frequencies and SARS-CoV-2 antibody titers, avidity and neutralization. Furthermore, cTfh cells but not other memory CD4 T cells, from severe patients better induce plasmablast differentiation and antibody production compared to cTfh cells from mild patients. However, virus-specific cTfh cell development is delayed in patients that display or later develop severe disease compared to those with mild disease, which correlates with delayed induction of high-avidity neutralizing antibodies. Our study suggests that impaired generation of functional virus-specific cTfh cells delays high-quality antibody production at an early stage, potentially enabling progression to severe disease.


Subject(s)
COVID-19 , T-Lymphocytes, Helper-Inducer , Humans , T Follicular Helper Cells , SARS-CoV-2 , Plasma Cells
5.
JCI Insight ; 7(13)2022 07 08.
Article in English | MEDLINE | ID: covidwho-1932894

ABSTRACT

BACKGROUNDProlonged symptoms after SARS-CoV-2 infection are well documented. However, which factors influence development of long-term symptoms, how symptoms vary across ethnic groups, and whether long-term symptoms correlate with biomarkers are points that remain elusive.METHODSAdult SARS-CoV-2 reverse transcription PCR-positive (RT-PCR-positive) patients were recruited at Stanford from March 2020 to February 2021. Study participants were seen for in-person visits at diagnosis and every 1-3 months for up to 1 year after diagnosis; they completed symptom surveys and underwent blood draws and nasal swab collections at each visit.RESULTSOur cohort (n = 617) ranged from asymptomatic to critical COVID-19 infections. In total, 40% of participants reported at least 1 symptom associated with COVID-19 six months after diagnosis. Median time from diagnosis to first resolution of all symptoms was 44 days; median time from diagnosis to sustained symptom resolution with no recurring symptoms for 1 month or longer was 214 days. Anti-nucleocapsid IgG level in the first week after positive RT-PCR test and history of lung disease were associated with time to sustained symptom resolution. COVID-19 disease severity, ethnicity, age, sex, and remdesivir use did not affect time to sustained symptom resolution.CONCLUSIONWe found that all disease severities had a similar risk of developing post-COVID-19 syndrome in an ethnically diverse population. Comorbid lung disease and lower levels of initial IgG response to SARS-CoV-2 nucleocapsid antigen were associated with longer symptom duration.TRIAL REGISTRATIONClinicalTrials.gov, NCT04373148.FUNDINGNIH UL1TR003142 CTSA grant, NIH U54CA260517 grant, NIEHS R21 ES03304901, Sean N Parker Center for Allergy and Asthma Research at Stanford University, Chan Zuckerberg Biohub, Chan Zuckerberg Initiative, Sunshine Foundation, Crown Foundation, and Parker Foundation.


Subject(s)
COVID-19 , COVID-19/complications , Humans , Immunoglobulin G , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
6.
Sci Transl Med ; 14(635): eabm7853, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1630954

ABSTRACT

A damaging inflammatory response is implicated in the pathogenesis of severe coronavirus disease 2019 (COVID-19), but mechanisms contributing to this response are unclear. In two prospective cohorts, early non-neutralizing, afucosylated immunoglobulin G (IgG) antibodies specific to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were associated with progression from mild to more severe COVID-19. To study the biology of afucosylated IgG immune complexes, we developed an in vivo model that revealed that human IgG-Fc-gamma receptor (FcγR) interactions could regulate inflammation in the lung. Afucosylated IgG immune complexes isolated from patients with COVID-19 induced inflammatory cytokine production and robust infiltration of the lung by immune cells. In contrast to the antibody structures that were associated with disease progression, antibodies that were elicited by messenger RNA SARS-CoV-2 vaccines were highly fucosylated and enriched in sialylation, both modifications that reduce the inflammatory potential of IgG. Vaccine-elicited IgG did not promote an inflammatory lung response. These results show that human IgG-FcγR interactions regulate inflammation in the lung and define distinct lung activities mediated by the IgG that are associated with protection against, or progression to, severe COVID-19.


Subject(s)
COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , COVID-19 Vaccines , Humans , Prospective Studies , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
7.
PLoS Negl Trop Dis ; 16(1): e0010102, 2022 01.
Article in English | MEDLINE | ID: covidwho-1603353

ABSTRACT

BACKGROUND: COVID-19 caused by SARS-CoV-2 ranges from asymptomatic to severe disease and can cause fatal and devastating outcome in many cases. In this study, we have compared the clinical, biochemical and immunological parameters across the different disease spectrum of COVID-19 in Bangladeshi patients. METHODOLOGY/PRINCIPAL FINDINGS: This longitudinal study was conducted in two COVID-19 hospitals and also around the community in Dhaka city in Bangladesh between November 2020 to March 2021. A total of 100 patients with COVID-19 infection were enrolled and classified into asymptomatic, mild, moderate and severe cases (n = 25/group). In addition, thirty age and sex matched healthy participants were enrolled and 21 were analyzed as controls based on exclusion criteria. After enrollment (study day1), follow-up visits were conducted on day 7, 14 and 28 for the cases. Older age, male gender and co-morbid conditions were the risk factors for severe COVID-19 disease. Those with moderate and severe cases of infection had low lymphocyte counts, high neutrophil counts along with a higher neutrophil-lymphocyte ratio (NLR) at enrollment; this decreased to normal range within 42 days after the onset of symptom. At enrollment, D-dimer, CRP and ferritin levels were elevated among moderate and severe cases. The mild, moderate, and severe cases were seropositive for IgG antibody by day 14 after enrollment. Moderate and severe cases showed significantly higher IgM and IgG levels of antibodies to SARS-CoV-2 compared to mild and asymptomatic cases. CONCLUSION/SIGNIFICANCE: We report on the clinical, biochemical, and hematological parameters associated with the different severity of COVID-19 infection. We also show different profile of antibody response against SARS-CoV-2 in relation to disease severity, especially in those with moderate and severe disease manifestations compared to the mild and asymptomatic infection.


Subject(s)
Antibodies, Viral/immunology , COVID-19/diagnosis , COVID-19/immunology , Severity of Illness Index , Adult , Antibody Formation , Bangladesh , COVID-19 Testing , Cohort Studies , Female , Fibrin Fibrinogen Degradation Products , Humans , Immunoglobulin G , Longitudinal Studies , Lymphocytes , Male , Middle Aged , Neutrophils , Risk Factors , SARS-CoV-2 , Viral Load
8.
Clin Immunol ; 231: 108828, 2021 10.
Article in English | MEDLINE | ID: covidwho-1363931

ABSTRACT

COVID-19 is characterized by a dysregulation of inflammatory cytokines ultimately resulting a cytokine storm that can result in significant morbidity and mortality. We developed an in-vitro assay using activated peripheral blood mononuclear cells (PBMCs) stimulated with lipopolysaccharide (LPS) or CD3 + CD28 to examine secretion of cytokines from antigen presenting cells (APCs) and T cells, respectively, in donor patients with a history of COVID-19 (convalescent) and uninfected negative controls. We hypothesized that a novel antioxidant called Tempol may decrease cytokines from activated peripheral blood cells from both COVID-19 patients and normal donors. Preincubation of immune cells with Tempol resulted in a significant (P < 0.05) decrease in multiple T cell and APC-derived cytokines from both cells of COVID-19 (n = 7) and uninfected donors (n = 7). These preliminary results suggest that Tempol has strong in-vitro anti-cytokine activity and supports additional studies examining the use of Tempol for the treatment of COVID-19.


Subject(s)
Antioxidants/pharmacology , COVID-19/immunology , Cyclic N-Oxides/pharmacology , Lymphocyte Activation/drug effects , SARS-CoV-2 , T-Lymphocytes/drug effects , Adult , Aged , Antigen-Presenting Cells/metabolism , Antigens, Viral/metabolism , Cytokines/antagonists & inhibitors , Cytokines/drug effects , Female , Humans , Male , Middle Aged , Spin Labels , T-Lymphocytes/physiology
9.
Nature ; 596(7872): 410-416, 2021 08.
Article in English | MEDLINE | ID: covidwho-1305364

ABSTRACT

The emergency use authorization of two mRNA vaccines in less than a year from the emergence of SARS-CoV-2 represents a landmark in vaccinology1,2. Yet, how mRNA vaccines stimulate the immune system to elicit protective immune responses is unknown. Here we used a systems vaccinology approach to comprehensively profile the innate and adaptive immune responses of 56 healthy volunteers who were vaccinated with the Pfizer-BioNTech mRNA vaccine (BNT162b2). Vaccination resulted in the robust production of neutralizing antibodies against the wild-type SARS-CoV-2 (derived from 2019-nCOV/USA_WA1/2020) and, to a lesser extent, the B.1.351 strain, as well as significant increases in antigen-specific polyfunctional CD4 and CD8 T cells after the second dose. Booster vaccination stimulated a notably enhanced innate immune response as compared to primary vaccination, evidenced by (1) a greater frequency of CD14+CD16+ inflammatory monocytes; (2) a higher concentration of plasma IFNγ; and (3) a transcriptional signature of innate antiviral immunity. Consistent with these observations, our single-cell transcriptomics analysis demonstrated an approximately 100-fold increase in the frequency of a myeloid cell cluster enriched in interferon-response transcription factors and reduced in AP-1 transcription factors, after secondary immunization. Finally, we identified distinct innate pathways associated with CD8 T cell and neutralizing antibody responses, and show that a monocyte-related signature correlates with the neutralizing antibody response against the B.1.351 variant. Collectively, these data provide insights into the immune responses induced by mRNA vaccination and demonstrate its capacity to prime the innate immune system to mount a more potent response after booster immunization.


Subject(s)
Adaptive Immunity , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Immunity, Innate , T-Lymphocytes/immunology , Vaccinology , Adult , Aged , Antibodies, Neutralizing/immunology , Autoantibodies/immunology , BNT162 Vaccine , COVID-19 Vaccines/administration & dosage , Female , Humans , Immunization, Secondary , Male , Middle Aged , Single-Cell Analysis , Spike Glycoprotein, Coronavirus/immunology , Transcription, Genetic , Transcriptome/genetics , Young Adult
10.
Cell ; 184(15): 3915-3935.e21, 2021 07 22.
Article in English | MEDLINE | ID: covidwho-1283262

ABSTRACT

Emerging evidence indicates a fundamental role for the epigenome in immunity. Here, we mapped the epigenomic and transcriptional landscape of immunity to influenza vaccination in humans at the single-cell level. Vaccination against seasonal influenza induced persistently diminished H3K27ac in monocytes and myeloid dendritic cells (mDCs), which was associated with impaired cytokine responses to Toll-like receptor stimulation. Single-cell ATAC-seq analysis revealed an epigenomically distinct subcluster of monocytes with reduced chromatin accessibility at AP-1-targeted loci after vaccination. Similar effects were observed in response to vaccination with the AS03-adjuvanted H5N1 pandemic influenza vaccine. However, this vaccine also stimulated persistently increased chromatin accessibility at interferon response factor (IRF) loci in monocytes and mDCs. This was associated with elevated expression of antiviral genes and heightened resistance to the unrelated Zika and Dengue viruses. These results demonstrate that vaccination stimulates persistent epigenomic remodeling of the innate immune system and reveal AS03's potential as an epigenetic adjuvant.


Subject(s)
Epigenomics , Immunity/genetics , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Single-Cell Analysis , Transcription, Genetic , Vaccination , Adolescent , Adult , Anti-Bacterial Agents/pharmacology , Antigens, CD34/metabolism , Antiviral Agents/pharmacology , Cellular Reprogramming , Chromatin/metabolism , Cytokines/biosynthesis , Drug Combinations , Female , Gene Expression Regulation , Histones/metabolism , Humans , Immunity, Innate/genetics , Influenza A Virus, H5N1 Subtype/drug effects , Influenza A Virus, H5N1 Subtype/immunology , Interferon Type I/metabolism , Male , Myeloid Cells/metabolism , Polysorbates/pharmacology , Squalene/pharmacology , Toll-Like Receptors/metabolism , Transcription Factor AP-1/metabolism , Transcriptome/genetics , Young Adult , alpha-Tocopherol/pharmacology
11.
Res Sq ; 2021 Apr 22.
Article in English | MEDLINE | ID: covidwho-1237035

ABSTRACT

The emergency use authorization of two COVID-19 mRNA vaccines in less than a year since the emergence of SARS-CoV-2, represents a landmark in vaccinology1,2. Yet, how mRNA vaccines stimulate the immune system to elicit protective immune responses is unknown. Here we used a systems biological approach to comprehensively profile the innate and adaptive immune responses in 56 healthy volunteers vaccinated with the Pfizer-BioNTech mRNA vaccine. Vaccination resulted in robust production of neutralizing antibodies (nAbs) against the parent strain and the variant of concern, B.1.351, but no induction of autoantibodies, and significant increases in antigen-specific polyfunctional CD4 and CD8 T cells after the second dose. The innate response induced within the first 2 days of booster vaccination was profoundly increased, relative to the response at corresponding times after priming. Thus, there was a striking increase in the: (i) frequency of CD14+CD16+ inflammatory monocytes; (ii) concentration of IFN- y in the plasma, which correlated with enhanced pSTAT3 and pSTAT1 levels in monocytes and T cells; and (iii) transcriptional signatures of innate responses characteristic of antiviral vaccine responses against pandemic influenza, HIV and Ebola, within 2 days following booster vaccination compared to primary vaccination. Consistent with these observations, single-cell transcriptomics analysis of 242,479 leukocytes demonstrated a ~100-fold increase in the frequency of a myeloid cluster, enriched in a signature of interferon-response transcription factors (TFs) and reduced in AP-1 TFs, one day after secondary immunization, at day 21. Finally, we delineated distinct molecular pathways of innate activation that correlate with CD8 T cell and nAb responses and identified an early monocyte-related signature that was associated with the breadth of the nAb response against the B1.351 variant strain. Collectively, these data provide insights into the immune responses induced by mRNA vaccines and demonstrate their capacity to stimulate an enhanced innate response following booster immunization.

12.
J Immunother Cancer ; 9(5)2021 05.
Article in English | MEDLINE | ID: covidwho-1219594

ABSTRACT

SARS-CoV-2 infection can have widely diverse clinical outcomes, from asymptomatic infection to death, with many possible clinical symptoms and syndromes. It is thus essential to understand how the virus interacts with the host immune system to bring about these varied outcomes and to inform vaccine development. We now know that both antibody and T cell responses are induced in the majority of infected individuals, and that cross-reactive responses from other coronaviruses also exist in the uninfected population. Innate immune responses are a key focus of research and may influence the course of disease and the character of subsequent adaptive responses. Finally, baseline immune profiles and changes during early acute infection may be key to predicting the course of disease. Understanding all these aspects can help to create better immune monitoring tools for COVID-19, including tools for predicting disease severity or specific sequelae, perhaps even prior to infection.


Subject(s)
Adaptive Immunity/immunology , COVID-19/immunology , Immunity, Innate/immunology , SARS-CoV-2/immunology , Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19/virology , Cytokines/immunology , Cytokines/metabolism , Humans , Pandemics , SARS-CoV-2/physiology , Severity of Illness Index , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
13.
J Clin Invest ; 131(6)2021 03 15.
Article in English | MEDLINE | ID: covidwho-1045635

ABSTRACT

The immunopathology of coronavirus disease 2019 (COVID-19) remains enigmatic, causing immunodysregulation and T cell lymphopenia. Monocytic myeloid-derived suppressor cells (M-MDSCs) are T cell suppressors that expand in inflammatory conditions, but their role in acute respiratory infections remains unclear. We studied the blood and airways of patients with COVID-19 across disease severities at multiple time points. M-MDSC frequencies were elevated in blood but not in nasopharyngeal or endotracheal aspirates of patients with COVID-19 compared with healthy controls. M-MDSCs isolated from patients with COVID-19 suppressed T cell proliferation and IFN-γ production partly via an arginase 1-dependent (Arg-1-dependent) mechanism. Furthermore, patients showed increased Arg-1 and IL-6 plasma levels. Patients with COVID-19 had fewer T cells and downregulated expression of the CD3ζ chain. Ordinal regression showed that early M-MDSC frequency predicted subsequent disease severity. In conclusion, M-MDSCs expanded in the blood of patients with COVID-19, suppressed T cells, and were strongly associated with disease severity, indicating a role for M-MDSCs in the dysregulated COVID-19 immune response.


Subject(s)
COVID-19/immunology , Myeloid-Derived Suppressor Cells/immunology , Adult , Aged , Aged, 80 and over , Arginase/blood , COVID-19/blood , COVID-19/pathology , Case-Control Studies , Cohort Studies , Female , Humans , Influenza, Human/blood , Influenza, Human/immunology , Influenza, Human/pathology , Interferon-gamma/blood , Interleukin-6/blood , Leukocyte Count , Male , Middle Aged , Myeloid-Derived Suppressor Cells/pathology , Pandemics , Respiratory System/immunology , Respiratory System/pathology , SARS-CoV-2 , Severity of Illness Index , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Young Adult
14.
Science ; 369(6508): 1210-1220, 2020 09 04.
Article in English | MEDLINE | ID: covidwho-704393

ABSTRACT

Coronavirus disease 2019 (COVID-19) represents a global crisis, yet major knowledge gaps remain about human immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We analyzed immune responses in 76 COVID-19 patients and 69 healthy individuals from Hong Kong and Atlanta, Georgia, United States. In the peripheral blood mononuclear cells (PBMCs) of COVID-19 patients, we observed reduced expression of human leukocyte antigen class DR (HLA-DR) and proinflammatory cytokines by myeloid cells as well as impaired mammalian target of rapamycin (mTOR) signaling and interferon-α (IFN-α) production by plasmacytoid dendritic cells. By contrast, we detected enhanced plasma levels of inflammatory mediators-including EN-RAGE, TNFSF14, and oncostatin M-which correlated with disease severity and increased bacterial products in plasma. Single-cell transcriptomics revealed a lack of type I IFNs, reduced HLA-DR in the myeloid cells of patients with severe COVID-19, and transient expression of IFN-stimulated genes. This was consistent with bulk PBMC transcriptomics and transient, low IFN-α levels in plasma during infection. These results reveal mechanisms and potential therapeutic targets for COVID-19.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , COVID-19 , Cytokines/blood , DNA, Bacterial/blood , Dendritic Cells/immunology , Dendritic Cells/metabolism , Female , Flow Cytometry , HLA-DR Antigens/analysis , Humans , Immunity , Immunity, Innate , Immunoglobulins/blood , Immunoglobulins/immunology , Inflammation Mediators/blood , Interferon Type I/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides/blood , Male , Myeloid Cells/immunology , Myeloid Cells/metabolism , Pandemics , SARS-CoV-2 , Signal Transduction , Single-Cell Analysis , Systems Biology , TOR Serine-Threonine Kinases/metabolism , Transcription, Genetic , Transcriptome
15.
JCI Insight ; 5(17)2020 09 03.
Article in English | MEDLINE | ID: covidwho-676865

ABSTRACT

BACKGROUNDElevated levels of inflammatory cytokines have been associated with poor outcomes among COVID-19 patients. It is unknown, however, how these levels compare with those observed in critically ill patients with acute respiratory distress syndrome (ARDS) or sepsis due to other causes.METHODSWe used a Luminex assay to determine expression of 76 cytokines from plasma of hospitalized COVID-19 patients and banked plasma samples from ARDS and sepsis patients. Our analysis focused on detecting statistical differences in levels of 6 cytokines associated with cytokine storm (IL-1ß, IL-1RA, IL-6, IL-8, IL-18, and TNF-α) between patients with moderate COVID-19, severe COVID-19, and ARDS or sepsis.RESULTSFifteen hospitalized COVID-19 patients, 9 of whom were critically ill, were compared with critically ill patients with ARDS (n = 12) or sepsis (n = 16). There were no statistically significant differences in baseline levels of IL-1ß, IL-1RA, IL-6, IL-8, IL-18, and TNF-α between patients with COVID-19 and critically ill controls with ARDS or sepsis.CONCLUSIONLevels of inflammatory cytokines were not higher in severe COVID-19 patients than in moderate COVID-19 or critically ill patients with ARDS or sepsis in this small cohort. Broad use of immunosuppressive therapies in ARDS has failed in numerous Phase 3 studies; use of these therapies in unselected patients with COVID-19 may be unwarranted.FUNDINGFunding was received from NHLBI K23 HL125663 (AJR); The Bill and Melinda Gates Foundation OPP1113682 (AJR and CAB); Burroughs Wellcome Fund Investigators in the Pathogenesis of Infectious Diseases #1016687 NIH/NIAID U19AI057229-16; Stanford Maternal Child Health Research Institute; and Chan Zuckerberg Biohub (CAB).


Subject(s)
Coronavirus Infections/immunology , Cytokine Release Syndrome/immunology , Cytokines/immunology , Pneumonia, Viral/immunology , Respiratory Distress Syndrome/immunology , Sepsis/immunology , Adult , Aged , COVID-19 , Case-Control Studies , Coronavirus Infections/blood , Cytokine Release Syndrome/blood , Cytokines/blood , Female , Humans , Interleukin 1 Receptor Antagonist Protein/blood , Interleukin 1 Receptor Antagonist Protein/immunology , Interleukin-18/blood , Interleukin-18/immunology , Interleukin-1beta/blood , Interleukin-1beta/immunology , Interleukin-6/blood , Interleukin-6/immunology , Interleukin-8/blood , Interleukin-8/immunology , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Respiratory Distress Syndrome/blood , Sepsis/blood , Severity of Illness Index , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/immunology
16.
Curr Cardiol Rep ; 22(5): 36, 2020 05 13.
Article in English | MEDLINE | ID: covidwho-309604

ABSTRACT

It has been pointed out that the second paragraph of the section "Treatments for SARS-CoV-2 Infection" contains an error. The original article has been corrected.

17.
Curr Cardiol Rep ; 22(5): 32, 2020 04 21.
Article in English | MEDLINE | ID: covidwho-100111

ABSTRACT

PURPOSE OF REVIEW: Coronavirus disease of 2019 (COVID-19) is a cause of significant morbidity and mortality worldwide. While cardiac injury has been demonstrated in critically ill COVID-19 patients, the mechanism of injury remains unclear. Here, we review our current knowledge of the biology of SARS-CoV-2 and the potential mechanisms of myocardial injury due to viral toxicities and host immune responses. RECENT FINDINGS: A number of studies have reported an epidemiological association between history of cardiac disease and worsened outcome during COVID infection. Development of new onset myocardial injury during COVID-19 also increases mortality. While limited data exist, potential mechanisms of cardiac injury include direct viral entry through the angiotensin-converting enzyme 2 (ACE2) receptor and toxicity in host cells, hypoxia-related myocyte injury, and immune-mediated cytokine release syndrome. Potential treatments for reducing viral infection and excessive immune responses are also discussed. COVID patients with cardiac disease history or acquire new cardiac injury are at an increased risk for in-hospital morbidity and mortality. More studies are needed to address the mechanism of cardiotoxicity and the treatments that can minimize permanent damage to the cardiovascular system.


Subject(s)
Coronavirus Infections/complications , Coronavirus Infections/immunology , Heart Diseases/complications , Heart Diseases/immunology , Heart Diseases/virology , Pneumonia, Viral/complications , Pneumonia, Viral/immunology , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus , COVID-19 , Coronavirus Infections/therapy , Cytokines/immunology , Humans , Hypoxia/pathology , Myocytes, Cardiac/pathology , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/therapy , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL