ABSTRACT
The coronavirus disease 2019 (COVID-19), with new variants, continues to be a constant pandemic threat that is generating socio-economic and health issues in manifold countries. The principal goal of this study is to develop a machine learning experiment to assess the effects of vaccination on the fatality rate of the COVID-19 pandemic. Data from 192 countries are analysed to explain the phenomena under study. This new algorithm selected two targets: the number of deaths and the fatality rate. Results suggest that, based on the respective vaccination plan, the turnout in the participation in the vaccination campaign, and the doses administered, countries under study suddenly have a reduction in the fatality rate of COVID-19 precisely at the point where the cut effect is generated in the neural network. This result is significant for the international scientific community. It would demonstrate the effective impact of the vaccination campaign on the fatality rate of COVID-19, whatever the country considered. In fact, once the vaccination has started (for vaccines that require a booster, we refer to at least the first dose), the antibody response of people seems to prevent the probability of death related to COVID-19. In short, at a certain point, the fatality rate collapses with increasing doses administered. All these results here can help decisions of policymakers to prepare optimal strategies, based on effective vaccination plans, to lessen the negative effects of the COVID-19 pandemic crisis in socioeconomic and health systems.
Subject(s)
COVID-19 , Algorithms , COVID-19/prevention & control , Humans , Machine Learning , Pandemics/prevention & control , VaccinationABSTRACT
This paper demonstrates how the combustion of fossil fuels for transport purpose might cause health implications. Based on an original case study [i.e. the Hubei province in China, the epicentre of the coronavirus disease-2019 (COVID-19) pandemic], we collected data on atmospheric pollutants (PM2.5, PM10 and CO2) and economic growth (GDP), along with daily series on COVID-19 indicators (cases, resuscitations and deaths). Then, we adopted an innovative Machine Learning approach, applying a new image Neural Networks model to investigate the causal relationships among economic, atmospheric and COVID-19 indicators. Empirical findings emphasise that any change in economic activity is found to substantially affect the dynamic levels of PM2.5, PM10 and CO2 which, in turn, generates significant variations in the spread of the COVID-19 epidemic and its associated lethality. As a robustness check, the conduction of an optimisation algorithm further corroborates previous results.
Subject(s)
Air Pollutants/adverse effects , Air Pollution/adverse effects , COVID-19/mortality , Fossil Fuels/adverse effects , Gross Domestic Product/statistics & numerical data , Neural Networks, Computer , Carbon Dioxide/adverse effects , China/epidemiology , Economic Development/statistics & numerical data , Humans , Particulate Matter/adverse effectsABSTRACT
While the deployment of technological innovation was able to avert a devastating global supply chain fallout arising from the impact of ravaging COronaVIrus Disease 19 (COVID-19) pandemic, little is known about potential environmental cost of such achievement. The aim of this paper is to identify the determinants of logistics performance and investigate its empirical linkages with economic and environmental indicators. We built a macro-level dataset for the top 25 ranked logistics countries from 2007 to 2018, conducting a set of panel data tests on cross-sectional dependence, stationarity and cointegration, to provide preliminary insights. Empirical estimates from Fully Modified Ordinary Least Squares (FMOLS), Generalized Method of Moments (GMM), and Quantile Regression (QR) model suggest that technological innovation, Human Development Index (HDI), urbanization, and trade openness significantly boost logistic performance, whereas employment and Gross Fixed Capital Formation (GFCF) fail to respond in such a desirable path. In turn, an increase in the Logistic Performance Index (LPI) is found to worsen economic growth. Finally, LPI exhibits a large positive effect on carbon emissions, which is congruent with a strand of the literature highlighting that the modern supply chain is far from being decarbonized. Thus, this evidence further suggest that more global efforts should be geared to attain a sustainable logistics.
ABSTRACT
Global energy demand increases overtime, especially in emerging market economies, producing potential negative environmental impacts, particularly on the long term, on nature and climate changes. Promoting renewables is a robust policy action in world energy-based economies. This study examines if an increase in renewables production has a positive effect on the Brazilian economy, partially offsetting the SARS-CoV2 outbreak recession. Using data on Brazilian economy, we test the contribution of renewables on the economy via a ML architecture (through a LSTM model). Empirical findings show that an ever-greater use of renewables may sustain the economic growth recovery, generating a better performing GDP acceleration vs. other energy variables.
Subject(s)
COVID-19 , Economic Development , Carbon Dioxide , Climate Change , Humans , RNA, Viral , Renewable Energy , SARS-CoV-2ABSTRACT
The aim of this paper is to assess the relationship between COVID-19-related deaths, economic growth, PM10, PM2.5, and NO2 concentrations in New York state using city-level daily data through two Machine Learning experiments. PM2.5 and NO2 are the most significant pollutant agents responsible for facilitating COVID-19 attributed death rates. Besides, we found only six out of many tested causal inferences to be significant and true within the AUPRC analysis. In line with the causal findings, a unidirectional causal effect is found from PM2.5 to Deaths, NO2 to Deaths, and economic growth to both PM2.5 and NO2. Corroborating the first experiment, the causal results confirmed the capability of polluting variables (PM2.5 to Deaths, NO2 to Deaths) to accelerate COVID-19 deaths. In contrast, we found evidence that unsustainable economic growth predicts the dynamics of air pollutants. This shows how unsustainable economic growth could increase environmental pollution by escalating emissions of pollutant agents (PM2.5 and NO2) in New York state.
Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Cities , Economic Development , Humans , Machine Learning , New York , Particulate Matter/analysis , SARS-CoV-2ABSTRACT
Being heavily dependent to oil products (mainly gasoline and diesel), the French transport sector is the main emitter of Particulate Matter (PMs) whose critical levels induce harmful health effects for urban inhabitants. We selected three major French cities (Paris, Lyon, and Marseille) to investigate the relationship between the Coronavirus Disease 19 (COVID-19) outbreak and air pollution. Using Artificial Neural Networks (ANNs) experiments, we have determined the concentration of PM2.5 and PM10 linked to COVID-19-related deaths. Our focus is on the potential effects of Particulate Matter (PM) in spreading the epidemic. The underlying hypothesis is that a pre-determined particulate concentration can foster COVID-19 and make the respiratory system more susceptible to this infection. The empirical strategy used an innovative Machine Learning (ML) methodology. In particular, through the so-called cutting technique in ANNs, we found new threshold levels of PM2.5 and PM10 connected to COVID-19: 17.4 µg/m3 (PM2.5) and 29.6 µg/m3 (PM10) for Paris; 15.6 µg/m3 (PM2.5) and 20.6 µg/m3 (PM10) for Lyon; 14.3 µg/m3 (PM2.5) and 22.04 µg/m3 (PM10) for Marseille. Interestingly, all the threshold values identified by the ANNs are higher than the limits imposed by the European Parliament. Finally, a Causal Direction from Dependency (D2C) algorithm is applied to check the consistency of our findings.
ABSTRACT
This paper examines the relationship between renewable energy consumption and economic growth in Brazil, in the Covid-19 pandemic. Using an Artificial Neural Networks (ANNs) experiment in Machine Learning, we tried to verify if a more intensive use of renewable energy could generate a positive GDP acceleration in Brazil. This acceleration could offset the harmful effects of the Covid-19 global pandemic. Empirical findings show that an ever-greater use of renewable energies may sustain the economic growth process. In fact, through a model of ANNs, we highlighted how an increasing consumption of renewable energies triggers an acceleration of the GDP compared to other energy variables considered in the model.
ABSTRACT
This study represents the first empirical estimation of threshold values between nitrogen dioxide (NO2) concentrations and COVID-19-related deaths in France. The concentration of NO2 linked to COVID-19-related deaths in three major French cities were determined using Artificial Neural Networks experiments and a Causal Direction from Dependency (D2C) algorithm. The aim of the study was to evaluate the potential effects of NO2 in spreading the epidemic. The underlying hypothesis is that NO2, as a precursor to secondary particulate matter formation, can foster COVID-19 and make the respiratory system more susceptible to this infection. Three different neural networks for the cities of Paris, Lyon and Marseille were built in this work, followed by the application of an innovative tool of cutting the signal from the inputs to the selected target. The results show that the threshold levels of NO2 connected to COVID-19 range between 15.8 µg/m3 for Lyon, 21.8 µg/m3 for Marseille and 22.9 µg/m3 for Paris, which were significantly lower than the average annual concentration limit of 40 µg/m³ imposed by Directive 2008/50/EC of the European Parliament.
Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Cities , France/epidemiology , Humans , Nitrogen Dioxide/analysis , Nitrogen Dioxide/toxicity , Particulate Matter/analysis , SARS-CoV-2ABSTRACT
This study uses two different approaches to explore the relationship between pollution emissions, economic growth, and COVID-19 deaths in India. Using a time series approach and annual data for the years from 1980 to 2018, stationarity and Toda-Yamamoto causality tests were performed. The results highlight unidirectional causality between economic growth and pollution. Then, a D2C algorithm on proportion-based causality is applied, implementing the Oryx 2.0.8 protocol in Apache. The underlying hypothesis is that a predetermined pollution concentration, caused by economic growth, could foster COVID-19 by making the respiratory system more susceptible to infection. We use data (from January 29 to May 18, 2020) on confirmed deaths (total and daily) and air pollution concentration levels for 25 major Indian cities. We verify a ML causal link between PM2.5, CO2, NO2, and COVID-19 deaths. The implications require careful policy design.
Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Cities , Economic Development , Humans , India , Machine Learning , Particulate Matter/analysis , SARS-CoV-2ABSTRACT
BACKGROUND: The coronavirus infection that emerged in China in the last few months of 2019 has now spread globally. Italy registered its first case in the second half of February, and in a short time period, it became the top country in Europe in terms of the number of infected people and the first in the world in terms of deaths. The medical and scientific community has been called upon to manage the emergency and to take measures. Dentists also need to take new precautions during their clinical activity to protect themselves, coworkers and patients from the risks of contagion and to avoid further spread of infection. METHODS: Following the data published in the international literature as well as the guidelines and directives constantly updated by the WHO and by the national health authorities, a questionnaire to be completed anonymously was submitted online to Italian dentists using social tools and online professional platforms. The collected data were processed statistically, providing descriptive data and analysis of correlations of the most significant parameters using the Pearson's χ2, the Likelihood-Ratio χ2, Cramér's V, Fisher's exact test, Goodman and Kruskal's γ, and Kendall's τb (p < 0.05). RESULTS: A total of 535 dentists from Italy participated in the survey. A good level of scientific knowledge about coronavirus and the extra precautionary measures needed to limit the spread was related to the age of respondents and their sex. Coming from areas with higher concentrations of cases affected knowledge, level of attention and perception of risk related to dental activity. CONCLUSIONS: At the moment, there are no therapies or vaccines to contain the infection with the new coronavirus that is causing many infections, many of which are fatal, worldwide. Dentists are one of the categories at highest risk of encountering diseases and infections because they work in close proximity with patients, and in their procedures, there is always contact with aerosols with high bacterial and viral potential. Therefore, during this COVID-19 emergency, it is important that dentists are properly informed and take the appropriate precautionary measures.