Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Clin Infect Dis ; 75(2): 305-313, 2022 08 25.
Article in English | MEDLINE | ID: covidwho-1708892


BACKGROUND: Post-vaccination infections challenge the control of the coronavirus disease 2019 (COVID-19) pandemic. METHODS: We matched 119 cases of post-vaccination severe acute respiratory syndrome coronavirus 2 infection with BNT162b2 mRNA or ChAdOx1 nCOV-19 to 476 unvaccinated patients with COVID-19 (September 2020-March 2021) according to age and sex. Differences in 60-day all-cause mortality, hospital admission, and hospital length of stay were evaluated. Phylogenetic, single-nucleotide polymorphism (SNP), and minority variant allele (MVA) full-genome sequencing analysis was performed. RESULTS: Overall, 116 of 119 cases developed COVID-19 post-first vaccination dose (median, 14 days). Thirteen of 119 (10.9%) cases and 158 of 476 (33.2%) controls died (P < .001), corresponding to the 4.5 number needed to treat (NNT). Multivariably, vaccination was associated with a 69.3% (95% confidence interval [CI]: 45.8 to 82.6) relative risk (RR) reduction in mortality. Similar results were seen in subgroup analysis for patients with infection onset ≥14 days after first vaccination and across vaccine subgroups. Hospital admissions (odds ratio, 0.80; 95% CI: .51 to 1.28) and length of stay (-1.89 days; 95% CI: -4.57 to 0.78) were lower for cases, while cycle threshold values were higher (30.8 vs 28.8, P = .053). B.1.1.7 was the predominant lineage in cases (100 of 108, 92.6%) and controls (341 of 446, 76.5%). Genomic analysis identified 1 post-vaccination case that harbored the E484K vaccine-escape mutation (B.1.525 lineage). CONCLUSIONS: Previous vaccination reduces mortality when B.1.1.7 is the predominant lineage. No significant lineage-specific genomic changes during phylogenetic, SNP, and MVA analysis were detected.

COVID-19 , SARS-CoV-2 , BNT162 Vaccine , Case-Control Studies , ChAdOx1 nCoV-19 , Genomics , Humans , Phylogeny , SARS-CoV-2/genetics , Vaccination
J Infect ; 83(6): 693-700, 2021 12.
Article in English | MEDLINE | ID: covidwho-1446866


OBJECTIVES: Recently emerging SARS-CoV-2 variants have been associated with an increased rate of transmission within the community. We sought to determine whether this also resulted in increased transmission within hospitals. METHODS: We collected viral sequences and epidemiological data of patients with community and healthcare associated SARS-CoV-2 infections, sampled from 16th November 2020 to 10th January 2021, from nine hospitals participating in the COG-UK HOCI study. Outbreaks were identified using ward information, lineage and pairwise genetic differences between viral sequences. RESULTS: Mixed effects logistic regression analysis of 4184 sequences showed healthcare-acquired infections were no more likely to be identified as the Alpha variant than community acquired infections. Nosocomial outbreaks were investigated based on overlapping ward stay and SARS-CoV-2 genome sequence similarity. There was no significant difference in the number of patients involved in outbreaks caused by the Alpha variant compared to outbreaks caused by other lineages. CONCLUSIONS: We find no evidence to support it causing more nosocomial transmission than previous lineages. This suggests that the stringent infection prevention measures already in place in UK hospitals contained the spread of the Alpha variant as effectively as other less transmissible lineages, providing reassurance of their efficacy against emerging variants of concern.

COVID-19 , Cross Infection , Cross Infection/epidemiology , Hospitals , Humans , SARS-CoV-2 , United Kingdom/epidemiology