Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
JACC Clin Electrophysiol ; 7(9): 1120-1130, 2021 09.
Article in English | MEDLINE | ID: covidwho-1198841


OBJECTIVES: The goal of this study is to determine the incidence, predictors, and outcomes of atrial fibrillation (AF) or atrial flutter (AFL) in patients hospitalized with coronavirus disease-2019 (COVID-19). BACKGROUND: COVID-19 results in increased inflammatory markers previously associated with atrial arrhythmias. However, little is known about their incidence or specificity in COVID-19 or their association with outcomes. METHODS: This is a retrospective analysis of 3,970 patients admitted with polymerase chain reaction-positive COVID-19 between February 4 and April 22, 2020, with manual review performed of 1,110. The comparator arm included 1,420 patients with influenza hospitalized between January 1, 2017, and January 1, 2020. RESULTS: Among 3,970 inpatients with COVID-19, the incidence of AF/AFL was 10% (n = 375) and in patients without a history of atrial arrhythmias it was 4% (n = 146). Patients with new-onset AF/AFL were older with increased inflammatory markers including interleukin 6 (93 vs. 68 pg/ml; p < 0.01), and more myocardial injury (troponin-I: 0.2 vs. 0.06 ng/ml; p < 0.01). AF and AFL were associated with increased mortality (46% vs. 26%; p < 0.01). Manual review captured a somewhat higher incidence of AF/AFL (13%, n = 140). Compared to inpatients with COVID-19, patients with influenza (n = 1,420) had similar rates of AF/AFL (12%, n = 163) but lower mortality. The presence of AF/AFL correlated with similarly increased mortality in both COVID-19 (relative risk: 1.77) and influenza (relative risk: 1.78). CONCLUSIONS: AF/AFL occurs in a subset of patients hospitalized with either COVID-19 or influenza and is associated with inflammation and disease severity in both infections. The incidence and associated increase in mortality in both cohorts suggests that AF/AFL is not specific to COVID-19, but is rather a generalized response to the systemic inflammation of severe viral illnesses.

Atrial Fibrillation , COVID-19 , Influenza, Human , Atrial Fibrillation/epidemiology , Humans , Incidence , Influenza, Human/epidemiology , Retrospective Studies , Risk Factors , SARS-CoV-2
Circ Arrhythm Electrophysiol ; 13(11): e008920, 2020 11.
Article in English | MEDLINE | ID: covidwho-975764


BACKGROUND: Patients with coronavirus disease 2019 (COVID-19) who develop cardiac injury are reported to experience higher rates of malignant cardiac arrhythmias. However, little is known about these arrhythmias-their frequency, the underlying mechanisms, and their impact on mortality. METHODS: We extracted data from a registry (NCT04358029) regarding consecutive inpatients with confirmed COVID-19 who were receiving continuous telemetric ECG monitoring and had a definitive disposition of hospital discharge or death. Between patients who died versus discharged, we compared a primary composite end point of cardiac arrest from ventricular tachycardia/fibrillation or bradyarrhythmias such as atrioventricular block. RESULTS: Among 800 patients with COVID-19 at Mount Sinai Hospital with definitive dispositions, 140 patients had telemetric monitoring, and either died (52) or were discharged (88). The median (interquartile range) age was 61 years (48-74); 73% men; and ethnicity was White in 34%. Comorbidities included hypertension in 61%, coronary artery disease in 25%, ventricular arrhythmia history in 1.4%, and no significant comorbidities in 16%. Compared with discharged patients, those who died had elevated peak troponin I levels (0.27 versus 0.02 ng/mL) and more primary end point events (17% versus 4%, P=0.01)-a difference driven by tachyarrhythmias. Fatal tachyarrhythmias invariably occurred in the presence of severe metabolic imbalance, while atrioventricular block was largely an independent primary event. CONCLUSIONS: Hospitalized patients with COVID-19 who die experience malignant cardiac arrhythmias more often than those surviving to discharge. However, these events represent a minority of cardiovascular deaths, and ventricular tachyarrhythmias are mainly associated with severe metabolic derangement. Registration: URL:; Unique identifier: NCT04358029.

Arrhythmias, Cardiac/epidemiology , COVID-19/epidemiology , Heart Conduction System/physiopathology , Heart Rate , Action Potentials , Adult , Aged , Aged, 80 and over , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/mortality , Arrhythmias, Cardiac/physiopathology , COVID-19/diagnosis , COVID-19/mortality , COVID-19/physiopathology , Female , Hospital Mortality , Hospitalization , Humans , Incidence , Male , Middle Aged , New York City/epidemiology , Prognosis , Registries , Risk Assessment , Risk Factors , Time Factors , Young Adult
J Am Coll Cardiol ; 76(18): 2043-2055, 2020 11 03.
Article in English | MEDLINE | ID: covidwho-887081


BACKGROUND: Myocardial injury is frequent among patients hospitalized with coronavirus disease-2019 (COVID-19) and is associated with a poor prognosis. However, the mechanisms of myocardial injury remain unclear and prior studies have not reported cardiovascular imaging data. OBJECTIVES: This study sought to characterize the echocardiographic abnormalities associated with myocardial injury and their prognostic impact in patients with COVID-19. METHODS: We conducted an international, multicenter cohort study including 7 hospitals in New York City and Milan of hospitalized patients with laboratory-confirmed COVID-19 who had undergone transthoracic echocardiographic (TTE) and electrocardiographic evaluation during their index hospitalization. Myocardial injury was defined as any elevation in cardiac troponin at the time of clinical presentation or during the hospitalization. RESULTS: A total of 305 patients were included. Mean age was 63 years and 205 patients (67.2%) were male. Overall, myocardial injury was observed in 190 patients (62.3%). Compared with patients without myocardial injury, those with myocardial injury had more electrocardiographic abnormalities, higher inflammatory biomarkers and an increased prevalence of major echocardiographic abnormalities that included left ventricular wall motion abnormalities, global left ventricular dysfunction, left ventricular diastolic dysfunction grade II or III, right ventricular dysfunction and pericardial effusions. Rates of in-hospital mortality were 5.2%, 18.6%, and 31.7% in patients without myocardial injury, with myocardial injury without TTE abnormalities, and with myocardial injury and TTE abnormalities. Following multivariable adjustment, myocardial injury with TTE abnormalities was associated with higher risk of death but not myocardial injury without TTE abnormalities. CONCLUSIONS: Among patients with COVID-19 who underwent TTE, cardiac structural abnormalities were present in nearly two-thirds of patients with myocardial injury. Myocardial injury was associated with increased in-hospital mortality particularly if echocardiographic abnormalities were present.

Coronavirus Infections/diagnostic imaging , Heart/diagnostic imaging , Myocardium/pathology , Pneumonia, Viral/diagnostic imaging , Ventricular Dysfunction/virology , Aged , Betacoronavirus , Biomarkers/blood , COVID-19 , Coronary Angiography , Coronavirus Infections/blood , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Coronavirus Infections/mortality , Echocardiography , Electrocardiography , Female , Heart/physiopathology , Humans , Italy/epidemiology , Male , Middle Aged , New York City/epidemiology , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/complications , Pneumonia, Viral/mortality , Retrospective Studies , SARS-CoV-2