Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Front Microbiol ; 13: 895695, 2022.
Article in English | MEDLINE | ID: covidwho-2009881


The rapid spread of the SARS-CoV-2 virus and its variants has created a catastrophic impact worldwide. Several variants have emerged, including B.1.351 (Beta), B.1.1.28/triple mutant (P.1), B.1.1.7 (Alpha), and B.1.429 (Epsilon). We performed comparative and comprehensive antigenicity mapping of the total S-glycoprotein using the Wuhan strain and the other variants and identified 9-mer, 15-mer, and 20-mer CTL epitopes through in silico analysis. The study found that 9-mer CTL epitope regions in the B.1.1.7 variant had the highest antigenicity and an average of the three epitope types. Cluster analysis of the 9-mer CTL epitopes depicted one significant cluster at the 70% level with two nodes (KGFNCYFPL and EGFNCYFPL). The phage-displayed peptides showed mimic 9-mer CTL epitopes with three clusters. CD spectra analysis showed the same band pattern of S-glycoprotein of Wuhan strain and all variants other than B.1.429. The developed 3D model of the superantigen (SAg)-like regions found an interaction pattern with the human TCR, indicating that the SAg-like component might interact with the TCR beta chain. The present study identified another partial SAg-like region (ANQFNSAIGKI) from the S-glycoprotein. Future research should examine the molecular mechanism of antigen processing for CD8+ T cells, especially all the variants' antigens of S-glycoprotein.

Expert Rev Clin Pharmacol ; 14(2): 225-238, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1020150


Introduction: Protein drug targets play a significant choice in different stages of the drug discovery process. There is an urgent need to understand the drug discovery approaches and protein drug targets (PDT) of SARS-CoV-2, with structural insights for the development of SARS-CoV-2 drugs through targeted therapeutic approach.Areas covered: We have described the protein as a drug target class and also discussed various drug discovery approaches for SARS-CoV-2 involving the protein drug targets such as drug repurposing study, designing of viral entry inhibitors, viral replication inhibitors, and different enzymes of the virus. We have performed comprehensive literature search from the popular databases such as PubMed Google scholar, Web of Science, and Scopus. Finally, we have illustrated the structural landscape of different significant viral proteins (3 CLpro or Mpro, PLpro, RdRp, helicase, S protein) and host proteins as drug targets (cathepsin L, furin, TMPRSS2, ACE2).Expert opinion: The structural landscape of PDT with their binding pockets, and significant residues involved in binding has been discussed further to better understand the PDT and the structure-based drug discovery for SARS-CoV-2. This attempt will increase more therapeutic options, and combination therapies with a multi-target strategy.

Antiviral Agents/pharmacology , COVID-19 Drug Treatment , COVID-19/virology , SARS-CoV-2/drug effects , Drug Delivery Systems , Drug Development , Drug Repositioning , Humans , Virus Internalization/drug effects
Infect Genet Evol ; 85: 104587, 2020 11.
Article in English | MEDLINE | ID: covidwho-837819


BACKGROUND: The coronavirus (CoV) spike (S) protein is critical for receptor binding, membrane fusion and internalization of the virus into the human cells. We have tried to search the epitopic component of the S-protein that might be served as crucial targets for the vaccine development and also tried to understand the molecular mechanism of epitopes and TLR4/MD-2 complex for adaptive immunity. MATERIAL AND METHODS: Here we identified the antigenicity and the epitopic divergence of S-protein via immunoinformatics approach. The study was performed to identify the epitopes, composition of amino acids and its distribution in epitopic regions, composition of amino acid between the identified epitopes, secondary structure architecture of epitopes, physicochemical and biochemical parameters and molecular interaction between the identified epitope and TLR4/MD-2 complex. The SARS-CoV-2 can be possibly recognised by TLR4 of host immune cells that are responsible for the adaptive immune response. RESULTS: We identified four SARS-CoV-2 S-protein 9mer antigenic epitopes and observed that they bind with the TLR4/MD-2 complex by varied stable molecular bonding interactions. Molecular interaction between these characterized epitopes with TLR4/MD-2 complex might be indicated the binding affinity and downstream signalling of adaptive immune response. Different physicochemical and biochemical parameters such as O-glycosylation and N-glycosylation, Hydrophobicity, GRAVY were identified within epitopic regions of S-protein. These parameters help to understand the protein-protein interaction between epitopes and TLR4/MD-2 complex. The study also revealed different epitopic binding pockets of TLR4/MD-2 complex. CONCLUSIONS: The identified epitopes impart suitable prospects for the development of novel peptide-based epitopic vaccine for the control of COVID-19 infection.

Computational Biology/methods , Epitopes, B-Lymphocyte/metabolism , Epitopes, T-Lymphocyte/metabolism , Lymphocyte Antigen 96/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Toll-Like Receptor 4/metabolism , Adaptive Immunity , COVID-19/metabolism , COVID-19/virology , Humans , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Docking Simulation , Protein Binding , Protein Conformation , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology