Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
2.
Eur J Immunol ; 2022 Mar 06.
Article in English | MEDLINE | ID: covidwho-1729126

ABSTRACT

Effective vaccines and monoclonal antibodies have been developed against coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the appearance of virus variants with higher transmissibility and pathogenicity is a major concern because of their potential to escape vaccines and clinically approved SARS-CoV-2- antibodies. Here, we use flow cytometry-based binding and pseudotyped SARS-CoV-2 neutralization assays to determine the efficacy of boost immunization and therapeutic antibodies to neutralize the dominant Omicron variant. We provide compelling evidence that the third vaccination with BNT162b2 increases the amount of neutralizing serum antibodies against Delta and Omicron variants, albeit to a lower degree when compared to the parental Wuhan strain. Therefore, a third vaccination is warranted to increase titers of protective serum antibodies, especially in the case of the Omicron variant. We also found that most clinically approved and otherwise potent therapeutic antibodies against the Delta variant failed to recognize and neutralize the Omicron variant. In contrast, some antibodies under preclinical development potentially neutralized the Omicron variant. Our studies also support using a flow cytometry-based antibody binding assay to rapidly monitor therapeutic candidates and serum titers against emerging SARS-CoV-2 variants.

3.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-321594

ABSTRACT

Immune-mediated inflammatory diseases (IMIDs) of the joints, gut and skin are treated with inhibitors of inflammatory cytokines. These cytokines are involved in the pathogenesis of coronavirus disease 2019 (COVID-19). Investigating anti-SARS-CoV-2 antibody responses in IMIDs we observed a significantly reduced incidence of SARS-CoV-2 infection in IMID patients treated with cytokine inhibitors compared to patients receiving no such inhibitors and two healthy control populations, despite similar social exposure. Hence, cytokine inhibitors seem to at least partially protect from SARS-CoV-2 infection.Authors David Simon and Koray Tascilar contributed equally to this work. Authors Markus F. Neurath and Georg Schett share senior authorship.

4.
Arthritis Rheumatol ; 2021 Dec 23.
Article in English | MEDLINE | ID: covidwho-1589173

ABSTRACT

OBJECTIVE: To investigate the impact of biologic disease-modifying antirheumatic drug (bDMARD) treatment on the prevalence, seroconversion rate, and longevity of the humoral immune response against SARS-CoV-2 in patients with immune-mediated inflammatory diseases (IMIDs). METHODS: Anti-SARS-CoV-2 IgG antibodies were measured in a prospective cohort of health care professional controls and non-health care controls and IMID patients receiving no treatment or receiving treatment with conventional or biologic DMARDs during the first and second COVID-19 waves. Regression models adjusting for age, sex, sampling time, and exposure risk behavior were used to calculate relative risks (RRs) of seropositivity. Seroconversion rates were assessed in participants with polymerase chain reaction (PCR)-positive SARS-CoV-2 infection. Antibody response longevity was evaluated by reassessing participants who tested positive during the first wave. RESULTS: In this study, 4,508 participants (2,869 IMID patients and 1,639 controls) were analyzed. The unadjusted RR (0.44 [95% confidence interval (95% CI) 0.31-0.62]) and adjusted RR (0.50 [95% CI 0.34-0.73]) for SARS-CoV-2 IgG antibodies were significantly lower in IMID patients treated with bDMARDs compared to non-health care controls (P < 0.001), primarily driven by treatment with tumor necrosis factor inhibitors, interleukin-17 (IL-17) inhibitors, and IL-23 inhibitors. Adjusted RRs for untreated IMID patients (1.12 [95% CI 0.75-1.67]) and IMID patients receiving conventional synthetic DMARDs (0.70 [95% CI 0.45-1.08]) were not significantly different from non-health care controls. Lack of seroconversion in PCR-positive participants was more common among bDMARD-treated patients (38.7%) than in non-health care controls (16%). Overall, 44% of positive participants lost SARS-CoV-2 antibodies by follow-up, with higher rates in IMID patients treated with bDMARDs (RR 2.86 [95% CI 1.43-5.74]). CONCLUSION: IMID patients treated with bDMARDs have a lower prevalence of SARS-CoV-2 antibodies, seroconvert less frequently after SARS-CoV-2 infection, and may exhibit a reduced longevity of their humoral immune response.

5.
Ann Rheum Dis ; 2021 Nov 24.
Article in English | MEDLINE | ID: covidwho-1532998

ABSTRACT

OBJECTIVES: To test whether patients with immune-mediated inflammatory disease (IMIDs), who did not respond to two doses of the SARS-CoV-2 vaccine, develop protective immunity, if a third vaccine dose is administered. METHODS: Patients with IMID who failed to seroconvert after two doses of SARS-CoV-2 vaccine were subjected to a third vaccination with either mRNA or vector-based vaccines. Anti-SARS-CoV-2 IgG, neutralising activity and T cell responses were assessed at baseline and 3 weeks after revaccination and also evaluated seprarately in rituximab (RTX) and non-RTX exposed patients. RESULTS: 66 non-responders were recruited, 33 treated with RTX, and 33 non-exposed to RTX. Overall, 49.2% patients seroconverted and 50.0% developed neutralising antibody activity. Seroconversion (78.8% vs 18.2%) and neutralising activity (80.0% vs 21.9%) was higher in non-RTX than RTX-treated patients with IMID, respectively. Humoral vaccination responses were not different among patients showing positive (59.3%) or negative (49.7%) T cell responses at baseline. Patients remaining on mRNA-based vaccines showed similar vaccination responses compared with those switching to vector-based vaccines. CONCLUSIONS: Overall, these data strongly argue in favor of a third vaccination in patients with IMID lacking response to standard vaccination irrespective of their B cell status.

6.
Arthritis Rheumatol ; 74(1): 33-37, 2022 01.
Article in English | MEDLINE | ID: covidwho-1527417

ABSTRACT

OBJECTIVE: B cell depletion is an established therapeutic principle in a wide range of autoimmune diseases. However, B cells are also critical for inducing protective immunity after infection and vaccination. We undertook this study to assess humoral and cellular immune responses after infection with or vaccination against SARS-CoV-2 in patients with B cell depletion and controls who are B cell-competent. METHODS: Antibody responses (tested using enzyme-linked immunosorbent assay) and T cell responses (tested using interferon-γ enzyme-linked immunospot assay) against the SARS-CoV-2 spike S1 and nucleocapsid proteins were assessed in a limited number of previously infected (n = 6) and vaccinated (n = 8) autoimmune disease patients with B cell depletion, as well as previously infected (n = 30) and vaccinated (n = 30) healthy controls. RESULTS: As expected, B cell and T cell responses to the nucleocapsid protein were observed only after infection, while respective responses to SARS-CoV-2 spike S1 were found after both infection and vaccination. A SARS-CoV-2 antibody response was observed in all vaccinated controls (30 of 30 [100%]) but in none of the vaccinated patients with B cell depletion (0 of 8). In contrast, after SARS-CoV-2 infection, both the patients with B cell depletion (spike S1, 5 of 6 [83%]; nucleocapsid, 3 of 6 [50%]) and healthy controls (spike S1, 28 of 30 [93%]; nucleocapsid, 28 of 30 [93%]) developed antibodies. T cell responses against the spike S1 and nucleocapsid proteins were found in both infected and vaccinated patients with B cell depletion and in the controls. CONCLUSION: These data show that B cell depletion completely blocks humoral but not T cell SARS-CoV-2 vaccination response. Furthermore, limited humoral immune responses are found after SARS-CoV-2 infection in patients with B cell depletion.


Subject(s)
Autoimmune Diseases/immunology , B-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Lymphocyte Depletion/adverse effects , SARS-CoV-2/immunology , Autoimmune Diseases/drug therapy , Autoimmune Diseases/virology , COVID-19/prevention & control , Humans , Immunity, Cellular/immunology , Immunity, Humoral/immunology
7.
Arthritis Res Ther ; 23(1): 166, 2021 06 10.
Article in English | MEDLINE | ID: covidwho-1266501

ABSTRACT

BACKGROUND: To investigate whether methotrexate treatment may affect the susceptibility to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: Clinical assessment of symptoms, SARS-CoV-2 RNA, and anti-SARS-CoV-2 IgG in an initial case series of four families and confirmatory case series of seven families, within which one family member developed coronavirus disease 19 (COVID-19) and exposed another family member receiving methotrexate treatment; experimental part with methotrexate treatment of mice and organoids followed by the assessment of mRNA and protein expression of the SARS-CoV-2 receptor angiotensin-converting enzyme (ACE)-2. RESULTS: In the initial case series, three of four women on a joint ski trip developed COVID-19, while the fourth woman, under treatment with methotrexate, remained virus-free. Two of the three diseased women infected their husbands, while the third husband treated with methotrexate remained virus-free. In addition, 7 other families were identified in a follow-up case series, in which one member developed COVID-19, while the other, receiving methotrexate, remained healthy. Experimentally, when mice were treated with methotrexate, ACE2 expression significantly decreased in the lung, in the intestinal epithelium, and in intestinal organoids. CONCLUSION: These clinical and experimental data indicate that methotrexate has certain protective effects on SARS-CoV-2 infection via downregulating ACE2.


Subject(s)
COVID-19 , Animals , Humans , Methotrexate , Mice , RNA, Viral , SARS-CoV-2
8.
Ann Rheum Dis ; 80(10): 1312-1316, 2021 10.
Article in English | MEDLINE | ID: covidwho-1220000

ABSTRACT

OBJECTIVES: To better understand the factors that influence the humoral immune response to vaccination against SARS-CoV-2 in patients with immune-mediated inflammatory diseases (IMIDs). METHODS: Patients and controls from a large COVID-19 study, with (1) no previous history of COVID-19, (2) negative baseline anti-SARS-CoV-2 IgG test and (3) SARS-CoV-2 vaccination at least 10 days before serum collection were measured for anti-SARS-CoV-2 IgG. Demographic, disease-specific and vaccination-specific data were recorded. RESULTS: Vaccination responses from 84 patients with IMID and 182 controls were analysed. While all controls developed anti-SARS-CoV-2 IgG, five patients with IMID failed to develop a response (p=0.003). Moreover, 99.5% of controls but only 90.5% of patients with IMID developed neutralising antibody activity (p=0.0008). Overall responses were delayed and reduced in patients (mean (SD): 6.47 (3.14)) compared with controls (9.36 (1.85); p<0.001). Estimated marginal means (95% CI) adjusted for age, sex and time from first vaccination to sampling were 8.48 (8.12-8.85) for controls and 6.90 (6.45-7.35) for IMIDs. Significantly reduced vaccination responses pertained to untreated, conventionally and anticytokine treated patients with IMID. CONCLUSIONS: Immune responses against the SARS-CoV-2 are delayed and reduced in patients with IMID. This effect is based on the disease itself rather than concomitant treatment.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine/immunology , Rheumatic Diseases/immunology , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antirheumatic Agents/therapeutic use , Female , Humans , Male , Middle Aged , Rheumatic Diseases/drug therapy , SARS-CoV-2
10.
Nat Commun ; 11(1): 3774, 2020 07 24.
Article in English | MEDLINE | ID: covidwho-672188

ABSTRACT

Immune-mediated inflammatory diseases (IMIDs) of the joints, gut and skin are treated with inhibitors of inflammatory cytokines. These cytokines are involved in the pathogenesis of coronavirus disease 2019 (COVID-19). Investigating anti-SARS-CoV-2 antibody responses in IMIDs we observe a reduced incidence of SARS-CoV-2 seroconversion in IMID patients treated with cytokine inhibitors compared to patients receiving no such inhibitors and two healthy control populations, despite similar social exposure. Hence, cytokine inhibitors seem to at least partially protect from SARS-CoV-2 infection.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Cytokines/antagonists & inhibitors , Immune System Diseases/drug therapy , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Seroconversion , Adult , Antibodies, Viral/blood , COVID-19 , Female , Humans , Immunoglobulin G/blood , Immunosuppressive Agents/administration & dosage , Male , Middle Aged , Pandemics , Prevalence , Risk
11.
Nat Rev Rheumatol ; 16(8): 465-470, 2020 08.
Article in English | MEDLINE | ID: covidwho-606957

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an infectious disease, caused by severe acute respiratory syndrome coronavirus 2, which predominantly affects the lungs and, under certain circumstances, leads to an excessive or uncontrolled immune activation and cytokine response in alveolar structures. The pattern of pro-inflammatory cytokines induced in COVID-19 has similarities to those targeted in the treatment of rheumatoid arthritis. Several clinical studies are underway that test the effects of inhibiting IL-6, IL-1ß or TNF or targeting cytokine signalling via Janus kinase inhibition in the treatment of COVID-19. Despite these similarities, COVID-19 and other zoonotic coronavirus-mediated diseases do not induce clinical arthritis, suggesting that a local inflammatory niche develops in alveolar structures and drives the disease process. COVID-19 constitutes a challenge for patients with inflammatory arthritis for several reasons, in particular, the safety of immune interventions during the pandemic. Preliminary data, however, do not suggest that patients with inflammatory arthritis are at increased risk of COVID-19.


Subject(s)
Arthritis, Rheumatoid/immunology , Coronavirus Infections/immunology , Cytokine Release Syndrome/immunology , Pneumonia, Viral/immunology , Pulmonary Alveoli/immunology , Antibodies, Monoclonal, Humanized/therapeutic use , Antirheumatic Agents/therapeutic use , Arthralgia , Arthritis, Rheumatoid/drug therapy , Azetidines/therapeutic use , Betacoronavirus , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Delivery of Health Care , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Interleukin-1beta/immunology , Interleukin-6/immunology , Janus Kinase Inhibitors/therapeutic use , Myalgia , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/drug therapy , Purines , Pyrazoles , Rheumatology , SARS-CoV-2 , Sulfonamides/therapeutic use , Tumor Necrosis Factor Inhibitors/therapeutic use , Tumor Necrosis Factor-alpha/immunology
SELECTION OF CITATIONS
SEARCH DETAIL