Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Lancet Reg Health Eur ; 19: 100446, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1914781

ABSTRACT

Background: Starting from the final months of 2021, the SARS-CoV-2 Omicron variant expanded globally, swiftly replacing Delta, the variant that was dominant at the time. Many uncertainties remain about the epidemiology of Omicron; here, we aim to estimate its generation time. Methods: We used a Bayesian approach to analyze 23,122 SARS-CoV-2 infected individuals clustered in 8903 households as determined from contact tracing operations in Reggio Emilia, Italy, throughout January 2022. We estimated the distribution of the intrinsic generation time (the time between the infection dates of an infector and its secondary cases in a fully susceptible population), realized household generation time, realized serial interval (time between symptom onset of an infector and its secondary cases), and contribution of pre-symptomatic transmission. Findings: We estimated a mean intrinsic generation time of 6.84 days (95% credible intervals, CrI, 5.72-8.60), and a mean realized household generation time of 3.59 days (95%CrI: 3.55-3.60). The household serial interval was 2.38 days (95%CrI 2.30-2.47) with about 51% (95%CrI 45-56%) of infections caused by symptomatic individuals being generated before symptom onset. Interpretation: These results indicate that the intrinsic generation time of the SARS-CoV-2 Omicron variant might not have shortened as compared to previous estimates on ancestral lineages, Alpha and Delta, in the same geographic setting. Like for previous lineages, pre-symptomatic transmission appears to play a key role for Omicron transmission. Estimates in this study may be useful to design quarantine, isolation and contact tracing protocols and to support surveillance (e.g., for the accurate computation of reproduction numbers). Funding: The study was partially funded by EU grant 874850 MOOD.

2.
Clin Infect Dis ; 74(5): 893-896, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1703879

ABSTRACT

We analyzed 221 coronavirus disease 2019 cases identified between June 2020 and January 2021 in 6074 individuals screened for immunoglobulin G antibodies in May 2020, representing 77% of residents of 5 Italian municipalities. The relative risk of developing symptomatic infection in seropositive participants was 0.055 (95% confidence interval, .014-.220).


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Immunoglobulin G , Reinfection
3.
Euro Surveill ; 27(5)2022 02.
Article in English | MEDLINE | ID: covidwho-1700766

ABSTRACT

BackgroundSeveral SARS-CoV-2 variants of concern (VOC) have emerged through 2020 and 2021. There is need for tools to estimate the relative transmissibility of emerging variants of SARS-CoV-2 with respect to circulating strains.AimWe aimed to assess the prevalence of co-circulating VOC in Italy and estimate their relative transmissibility.MethodsWe conducted two genomic surveillance surveys on 18 February and 18 March 2021 across the whole Italian territory covering 3,243 clinical samples and developed a mathematical model that describes the dynamics of co-circulating strains.ResultsThe Alpha variant was already dominant on 18 February in a majority of regions/autonomous provinces (national prevalence: 54%) and almost completely replaced historical lineages by 18 March (dominant across Italy, national prevalence: 86%). We found a substantial proportion of the Gamma variant on 18 February, almost exclusively in central Italy (prevalence: 19%), which remained similar on 18 March. Nationally, the mean relative transmissibility of Alpha ranged at 1.55-1.57 times the level of historical lineages (95% CrI: 1.45-1.66). The relative transmissibility of Gamma varied according to the assumed degree of cross-protection from infection with other lineages and ranged from 1.12 (95% CrI: 1.03-1.23) with complete immune evasion to 1.39 (95% CrI: 1.26-1.56) for complete cross-protection.ConclusionWe assessed the relative advantage of competing viral strains, using a mathematical model assuming different degrees of cross-protection. We found substantial co-circulation of Alpha and Gamma in Italy. Gamma was not able to outcompete Alpha, probably because of its lower transmissibility.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Italy/epidemiology , Models, Theoretical
4.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327217

ABSTRACT

The SARS-CoV-2 variant of concern Omicron was first detected in Italy in November 2021. Data from three genomic surveys conducted in Italy between December 2021 and January 2022 suggest that Omicron became dominant in less than one month (prevalence on January 3: 78.6%-83.8%) with a doubling time of 2.7-3.1 days. The mean net reproduction number rose from about 1.15 in absence of Omicron to a peak of 1.83 for symptomatic cases and 1.33 for hospitalized cases, while it remained stable for critical cases.

5.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-324917

ABSTRACT

Solid estimates describing the clinical course of SARS-CoV-2 infections are still lacking due to under-ascertainment of asymptomatic and mild-disease cases. In this work, we quantify age-specific probabilities of transitions between stages defining the natural history of SARS-CoV-2 infection from 1,965 SARS-CoV-2 positive individuals identified in Italy between March and April 2020 among contacts of confirmed cases. Infected contacts of cases were confirmed via RT-PCR tests as part of contact tracing activities or retrospectively via IgG serological tests and followed-up for symptoms and clinical outcomes. In addition, we provide estimates of time intervals between key events defining the clinical progression of cases as obtained from a larger sample, consisting of 95,371 infections ascertained between February and July 2020. We found that being older than 60 years of age was associated with a 39.9% (95%CI: 36.2-43.6%) likelihood of developing respiratory symptoms or fever >= 37.5 °C after SARS-CoV-2 infection;the 22.3% (95%CI: 19.3-25.6%) of the infections in this age group required hospital care and the 1% (95%CI: 0.4-2.1%) were admitted to an intensive care unit (ICU). The corresponding proportions in individuals younger than 60 years were estimated at 27.9% (95%CI: 25.4-30.4%), 8.8% (95%CI: 7.3-10.5%) and 0.4% (95%CI: 0.1-0.9%), respectively. The infection fatality ratio (IFR) ranged from 0.2% (95%CI: 0.0-0.6%) in individuals younger than 60 years to 12.3% (95%CI: 6.9-19.7%) for those aged 80 years or more;the case fatality ratio (CFR) in these two age classes was 0.6% (95%CI: 0.1-2%) and 19.2% (95% CI: 10.9-30.1%), respectively. The median length of stay in hospital was 10 (IQR 3-21) days;the length of stay in ICU was 11 (IQR 6-19) days. The obtained estimates could be instrumental to refine mathematical modeling work supporting public health decisions.

6.
Nat Commun ; 12(1): 7272, 2021 12 14.
Article in English | MEDLINE | ID: covidwho-1574987

ABSTRACT

COVID-19 vaccination is allowing a progressive release of restrictions worldwide. Using a mathematical model, we assess the impact of vaccination in Italy since December 27, 2020 and evaluate prospects for societal reopening after emergence of the Delta variant. We estimate that by June 30, 2021, COVID-19 vaccination allowed the resumption of about half of pre-pandemic social contacts. In absence of vaccination, the same number of cases is obtained by resuming only about one third of pre-pandemic contacts, with about 12,100 (95% CI: 6,600-21,000) extra deaths (+27%; 95% CI: 15-47%). Vaccination offset the effect of the Delta variant in summer 2021. The future epidemic trend is surrounded by substantial uncertainty. Should a pediatric vaccine (for ages 5 and older) be licensed and a coverage >90% be achieved in all age classes, a return to pre-pandemic society could be envisioned. Increasing vaccination coverage will allow further reopening even in absence of a pediatric vaccine.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , Vaccination , Adolescent , Child , Child, Preschool , Humans , Italy , Models, Theoretical , Pandemics , SARS-CoV-2 , Vaccination Coverage
7.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-295429

ABSTRACT

Vaccination campaigns against COVID-19 are allowing the progressive release of physical distancing restrictions in many countries. However, the global spread of the highly transmissible Delta variant has likely suppressed the residual chances of SARS-CoV-2 elimination through herd immunity alone. Here we assess the impact of the vaccination program in Italy since its start on December 27, 2020 and evaluate possible prospects for reopening the society while at the same time keeping COVID-19 under control. To this aim, we propose a mathematical modeling framework where levels of social activity are adjusted to match the time-series of the net reproduction number as estimated from surveillance data. We compared the estimated level of social contacts, number of deaths, and transmission potential with those of a counterfactual scenario where the same epidemic trajectory is obtained in absence of vaccination. We then evaluate the prospective impact of different scenarios of vaccination coverage and different social activity levels on SARS-CoV-2 reproduction number. We estimate that by June 30, 2021, the COVID-19 vaccination program allowed the resumption of about half the social contacts that were recorded in pre-pandemic times;in absence of vaccination, only about one third could have been resumed to obtain the same number of cases, with the added cost of about 12,100 (95%CI: 6,600-21,000) extra deaths (+27%;95%CI: 15-47%) between December 27, 2020 and June 30, 2021. We show that the negative effect of the Delta variant diffusion in July was entirely offset by vaccination in the month of July and August 2021. Finally, we estimate that a complete return to the pre-pandemic life could be safely attained only if >90%, including children from 5 years on, will be vaccinated using mRNA vaccines developed in 2020. In any case, increasing the vaccination coverage will allow further margins for societal reopening even in absence of a pediatric vaccine. These results may support the definition of vaccination targets for countries that have already achieved a broad population coverage.

8.
Epidemics ; 37: 100528, 2021 12.
Article in English | MEDLINE | ID: covidwho-1520903

ABSTRACT

BACKGROUND: In the night of February 20, 2020, the first epidemic of the novel coronavirus disease (COVID-19) outside Asia was uncovered by the identification of its first patient in Lombardy region, Italy. In the following weeks, Lombardy experienced a sudden increase in the number of ascertained infections and strict measures were imposed to contain the epidemic spread. METHODS: We analyzed official records of cases occurred in Lombardy to characterize the epidemiology of SARS-CoV-2 during the early phase of the outbreak. A line list of laboratory-confirmed cases was set up and later retrospectively consolidated, using standardized interviews to ascertained cases and their close contacts. We provide estimates of the serial interval, of the basic reproduction number, and of the temporal variation of the net reproduction number of SARS-CoV-2. RESULTS: Epidemiological investigations detected over 500 cases (median age: 69, IQR: 57-78) before the first COVID-19 diagnosed patient (February 20, 2020), and suggested that SARS-CoV-2 was already circulating in at least 222 out of 1506 (14.7%) municipalities with sustained transmission across all the Lombardy provinces. We estimated the mean serial interval to be 6.6 days (95% CrI, 0.7-19). Our estimates of the basic reproduction number range from 2.6 in Pavia (95% CI, 2.1-3.2) to 3.3 in Milan (95% CI, 2.9-3.8). A decreasing trend in the net reproduction number was observed following the detection of the first case. CONCLUSIONS: At the time of first case notification, COVID-19 was already widespread in the entire Lombardy region. This may explain the large number of critical cases experienced by this region in a very short timeframe. The slight decrease of the reproduction number observed in the early days after February 20, 2020 might be due to increased population awareness and early interventions implemented before the regional lockdown imposed on March 8, 2020.


Subject(s)
COVID-19 , Aged , Communicable Disease Control , Humans , Italy/epidemiology , Retrospective Studies , SARS-CoV-2
9.
Epidemics ; 37: 100530, 2021 12.
Article in English | MEDLINE | ID: covidwho-1517154

ABSTRACT

Solid estimates describing the clinical course of SARS-CoV-2 infections are still lacking due to under-ascertainment of asymptomatic and mild-disease cases. In this work, we quantify age-specific probabilities of transitions between stages defining the natural history of SARS-CoV-2 infection from 1965 SARS-CoV-2 positive individuals identified in Italy between March and April 2020 among contacts of confirmed cases. Infected contacts of cases were confirmed via RT-PCR tests as part of contact tracing activities or retrospectively via IgG serological tests and followed-up for symptoms and clinical outcomes. In addition, we provide estimates of time intervals between key events defining the clinical progression of cases as obtained from a larger sample, consisting of 95,371 infections ascertained between February and July 2020. We found that being older than 60 years of age was associated with a 39.9% (95%CI: 36.2-43.6%) likelihood of developing respiratory symptoms or fever ≥ 37.5 °C after SARS-CoV-2 infection; the 22.3% (95%CI: 19.3-25.6%) of the infections in this age group required hospital care and the 1% (95%CI: 0.4-2.1%) were admitted to an intensive care unit (ICU). The corresponding proportions in individuals younger than 60 years were estimated at 27.9% (95%CI: 25.4-30.4%), 8.8% (95%CI: 7.3-10.5%) and 0.4% (95%CI: 0.1-0.9%), respectively. The infection fatality ratio (IFR) ranged from 0.2% (95%CI: 0.0-0.6%) in individuals younger than 60 years to 12.3% (95%CI: 6.9-19.7%) for those aged 80 years or more; the case fatality ratio (CFR) in these two age classes was 0.6% (95%CI: 0.1-2%) and 19.2% (95%CI: 10.9-30.1%), respectively. The median length of stay in hospital was 10 (IQR: 3-21) days; the length of stay in ICU was 11 (IQR: 6-19) days. The obtained estimates provide insights into the epidemiology of COVID-19 and could be instrumental to refine mathematical modeling work supporting public health decisions.


Subject(s)
COVID-19 , Contact Tracing , Humans , Public Health , Retrospective Studies , SARS-CoV-2
10.
Nat Commun ; 12(1): 4570, 2021 07 27.
Article in English | MEDLINE | ID: covidwho-1328847

ABSTRACT

To counter the second COVID-19 wave in autumn 2020, the Italian government introduced a system of physical distancing measures organized in progressively restrictive tiers (coded as yellow, orange, and red) imposed on a regional basis according to real-time epidemiological risk assessments. We leverage the data from the Italian COVID-19 integrated surveillance system and publicly available mobility data to evaluate the impact of the three-tiered regional restriction system on human activities, SARS-CoV-2 transmissibility and hospitalization burden in Italy. The individuals' attendance to locations outside the residential settings was progressively reduced with tiers, but less than during the national lockdown against the first COVID-19 wave in the spring. The reproduction number R(t) decreased below the epidemic threshold in 85 out of 107 provinces after the introduction of the tier system, reaching average values of about 0.95-1.02 in the yellow tier, 0.80-0.93 in the orange tier and 0.74-0.83 in the red tier. We estimate that the reduced transmissibility resulted in averting about 36% of the hospitalizations between November 6 and November 25, 2020. These results are instrumental to inform public health efforts aimed at preventing future resurgence of cases.


Subject(s)
COVID-19/epidemiology , Communicable Disease Control , Humans , Italy/epidemiology , SARS-CoV-2/pathogenicity
11.
Clin Infect Dis ; 74(5): 893-896, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1270734

ABSTRACT

We analyzed 221 coronavirus disease 2019 cases identified between June 2020 and January 2021 in 6074 individuals screened for immunoglobulin G antibodies in May 2020, representing 77% of residents of 5 Italian municipalities. The relative risk of developing symptomatic infection in seropositive participants was 0.055 (95% confidence interval, .014-.220).


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Immunoglobulin G , Reinfection
SELECTION OF CITATIONS
SEARCH DETAIL