ABSTRACT
COVID-19, a highly contagious viral infection caused by the occurrence of severe acute respiratory syndrome coronavirus (SARS-CoV-2), has turned out to be a viral pandemic then ravaged many countries worldwide. In the recent years, point-of-care (POC) biosensors combined with state-of-the-art bioreceptors, and transducing systems enabled the development of novel diagnostic tools for rapid and reliable detection of biomarkers associated with SARS-CoV-2. The present review thoroughly summarises and discusses various biosensing strategies developed for probing SARS-CoV-2 molecular architectures (viral genome, S Protein, M protein, E protein, N protein and non-structural proteins) and antibodies as a potential diagnostic tool for COVID-19. This review discusses the various structural components of SARS-CoV-2, their binding regions and the bioreceptors used for recognizing the structural components. The various types of clinical specimens investigated for rapid and POC detection of SARS-CoV-2 is also highlighted. The importance of nanotechnology and artificial intelligence (AI) approaches in improving the biosensor performance for real-time and reagent-free monitoring the biomarkers of SARS-CoV-2 is also summarized. This review also encompasses existing practical challenges and prospects for developing new POC biosensors for clinical monitoring of COVID-19.
ABSTRACT
Effective and efficient management of human betacoronavirus severe acute respiratory syndrome (SARS)-CoV-2 virus infection i.e., COVID-19 pandemic, required sensitive and selective sensors with short sample-to-result durations for performing desired diagnostics. In this direction, one appropriate alternative approach to detect SARS-CoV-2 virus protein at low level i.e., femtomolar (fM) is exploring plasmonic metasensor technology for COVID-19 diagnostics, which offers exquisite opportunities in advanced healthcare programs, and modern clinical diagnostics. The intrinsic merits of plasmonic metasensors stem from their capability to squeeze electromagnetic fields, simultaneously in frequency, time, and space. However, the detection of low-molecular weight biomolecules at low densities is a typical drawback of conventional metasensors that has recently been addressed using toroidal metasurface technology. This research is focused on the fabrication of a miniaturized plasmonic immunosensor based on toroidal electrodynamics concept that can sustain robustly confined plasmonic modes with ultranarrow lineshapes in the terahertz (THz) frequencies. By exciting toroidal dipole mode using our quasi-infinite metasurface and a judiciously optimized protocol based on functionalized gold nanoparticles (AuNPs) conjugated with the specific monoclonal antibody specific to spike protein (S1) of SARS-CoV-2 virus onto the metasurface, the resonance shifts for diverse concentrations of the spike protein are monitored. Possessing molecular weight around ~76 kDa allowed to detect the presence of SARS-CoV-2 virus protein with significantly low as limit of detection (LoD) was achieved as ~4.2 fM. We envisage that outcomes of this research will pave the way toward the use of toroidal metasensors as practical technologies for rapid and precise screening of SARS-CoV-2 virus carriers, symptomatic or asymptomatic, and spike proteins in hospitals, clinics, laboratories, and site of infection.