Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-313371

ABSTRACT

Background: Prolonged symptoms after SARS-CoV-2 infection are well-documented. However, which factors influence development of long-term symptoms, how symptoms vary across ethnic groups, and whether long-term symptoms correlate with serologic biomarkers remain elusive. Methods: Adult inpatient and outpatient SARS-CoV-2 RT-PCR positive patients were recruited at Stanford from March 2020 to February 2021. Study participants were seen for in-person visits at diagnosis and every 1-3 months for up to one year after diagnosis;they completed symptom surveys and underwent sampling procedures (blood draw and nasal swab) at each visit. Findings: Our cohort (n=617) ranged from asymptomatic to critical COVID-19 infections. 40% of participants reported at least one symptom associated with COVID-19 six months after diagnosis. Median time from diagnosis to first resolution of all symptoms was 44 days, median time from diagnosis to sustained symptom resolution with no recurring symptoms for one month or longer was 214 days. Serum anti-nucleocapsid IgG level in the first week of infection was predictive of time to symptom resolution. A prior diagnosis of lung disease was associated with longer time to symptom resolution. COVID-19 disease severity, ethnicity, sex, cytomegalovirus (CMV) seropositivity, and remdesivir use did not affect time to sustained symptom resolution. More than 90% of participants had SARS-CoV-2-specific antibody>1000 AU/mL nine months after diagnosis. Interpretation: Our findings showed that all disease severities had a similar risk of developing post-COVID-19 syndrome in an ethnically diverse population. Comorbid lung disease and lower levels of initial IgG response to SARS-CoV-2 nucleocapsid antigen were associated with longer symptom duration. Trial Registration: National clinical trial database NCT04664309.Funding: NIH CTSA grant, U54 NIH Grant, R21 NIEHS, Sean N Parker Center for Allergy and Asthma Research at Stanford University, the Sunshine Foundation, the Crown Foundation, and the Parker Foundation.Declaration of Interest: Dr. Boyd received support for the current manuscript from Meso Scale Discovery and NIH;418 received consulting fees by Regeneron for expert testimony, has stocks or stock options in 419 AbCellera Biologics;Dr. Chinthrajah reports grants from NIAID, CoFAR, Aimmune, DBV 420 Technologies, Astellas, Regeneron, Stanford Maternal and Child Health Research Institute 421 (MCHRI), and FARE. She is an Advisory Board Member at Alladapt Therapeutics, Novartis, 422 Genentech, Sanofi, Allergenis, and Nutricia;Dr. Manisha Desai received support from Chan 423 Zuckerberg Foundation;Dr. Maecker received grants or contracts from NIH, Bill & Melinda 424 Gates Foundation, Ionis Corporation, Amgen Corporation;Consulting fees from Magarray Corp;425 payment or honoraria from UCLA, UC Davis;leadership or fiduciary role at Cytek SAB;stocks 426 or stock options at BD Biosciences;Dr. Nadeau reports grants from National Institute of Allergy and Infectious Diseases (NIAID), National Heart, Lung, and Blood Institute (NHLBI), National Institute of Environmental Health Sciences (NIEHS), and Food Allergy Research & Education (FARE);Director of World Allergy Organization (WAO) , Advisor at Cour Pharma, Consultant for Excellergy, Red tree ventures, and Phylaxis, Co-founder of Before Brands, Alladapt, Latitude, and IgGenix;and National Scientific Committee member at Immune Tolerance Network (ITN), and National Institutes of Health (NIH) clinical research centers, outside the submitted work;patents include, “Mixed allergen composition and methods for using the same”, “Granulocyte-based methods for detecting and monitoring immune system disorders”, “Methods and Assays for Detecting and Quantifying Pure Subpopulations of White Blood Cells in Immune System Disorders,” and “Methods of isolating allergen-specific antibodies from humans and uses thereof”;Dr. Benjamin Pinsky received grants or contracts for the present manuscript from MesoScale Diagno tics;Dr. Angele Rogers was a Clinical Trials Advisory Board Member for Merck;Dr. Sindher reports support for the present manuscript from the NIH, Regeneron, DBV Technologies, Aimmune, Novartis, CoFAR, FARE, participated on a DSMB for Astra Zeneca, DBV, and received payment or honorarium from FARE;Neera Ahuja, Maja Artandi, Linda Barman, Catherine Blish, Andra Blomkalns, William Collins, MacKenzie Cox, Linda Geng, Xiaolin Jia, Megan Mahoney, Monali Manohar, Ruth O’hara, Rajan Puri, Katharina Roltgen, Laura Vaughan, Samuel Yang, Shu Cao, Iris Chang, Hena Din, Evan Do, Andrea Fernandez, Alexandra Lee, Natasha Purington, Yael Rosenberg-Hasson, Theo Snow, Daniel Solis, Michelle Verghese, and Yingjie Weng have no conflict of interest.Ethical Approval: This study was reviewed and approved by the Stanford Administrative Panel on Human Subjects in Medical Research.

2.
Cell ; 185(6): 1025-1040.e14, 2022 03 17.
Article in English | MEDLINE | ID: covidwho-1649487

ABSTRACT

During the SARS-CoV-2 pandemic, novel and traditional vaccine strategies have been deployed globally. We investigated whether antibodies stimulated by mRNA vaccination (BNT162b2), including third-dose boosting, differ from those generated by infection or adenoviral (ChAdOx1-S and Gam-COVID-Vac) or inactivated viral (BBIBP-CorV) vaccines. We analyzed human lymph nodes after infection or mRNA vaccination for correlates of serological differences. Antibody breadth against viral variants is lower after infection compared with all vaccines evaluated but improves over several months. Viral variant infection elicits variant-specific antibodies, but prior mRNA vaccination imprints serological responses toward Wuhan-Hu-1 rather than variant antigens. In contrast to disrupted germinal centers (GCs) in lymph nodes during infection, mRNA vaccination stimulates robust GCs containing vaccine mRNA and spike antigen up to 8 weeks postvaccination in some cases. SARS-CoV-2 antibody specificity, breadth, and maturation are affected by imprinting from exposure history and distinct histological and antigenic contexts in infection compared with vaccination.


Subject(s)
Antibodies, Viral , COVID-19 , Germinal Center , Antigens, Viral , COVID-19/prevention & control , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Vaccination
3.
Nat Commun ; 12(1): 5417, 2021 09 14.
Article in English | MEDLINE | ID: covidwho-1410404

ABSTRACT

COVID-19 is associated with a wide range of clinical manifestations, including autoimmune features and autoantibody production. Here we develop three protein arrays to measure IgG autoantibodies associated with connective tissue diseases, anti-cytokine antibodies, and anti-viral antibody responses in serum from 147 hospitalized COVID-19 patients. Autoantibodies are identified in approximately 50% of patients but in less than 15% of healthy controls. When present, autoantibodies largely target autoantigens associated with rare disorders such as myositis, systemic sclerosis and overlap syndromes. A subset of autoantibodies targeting traditional autoantigens or cytokines develop de novo following SARS-CoV-2 infection. Autoantibodies track with longitudinal development of IgG antibodies recognizing SARS-CoV-2 structural proteins and a subset of non-structural proteins, but not proteins from influenza, seasonal coronaviruses or other pathogenic viruses. We conclude that SARS-CoV-2 causes development of new-onset IgG autoantibodies in a significant proportion of hospitalized COVID-19 patients and are positively correlated with immune responses to SARS-CoV-2 proteins.


Subject(s)
Autoantibodies/immunology , COVID-19/immunology , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Aged , Antibodies, Antinuclear/blood , Antibodies, Antinuclear/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Autoantibodies/blood , Autoantigens/immunology , Connective Tissue Diseases/immunology , Cytokines/immunology , Female , Hospitalization , Humans , Immunoglobulin G/blood , Male , Middle Aged , SARS-CoV-2/pathogenicity , Viral Proteins/immunology
4.
Sci Immunol ; 6(61)2021 07 01.
Article in English | MEDLINE | ID: covidwho-1295163

ABSTRACT

A central feature of the SARS-CoV-2 pandemic is that some individuals become severely ill or die, whereas others have only a mild disease course or are asymptomatic. Here we report development of an improved multimeric αß T cell staining reagent platform, with each maxi-ferritin "spheromer" displaying 12 peptide-MHC complexes. Spheromers stain specific T cells more efficiently than peptide-MHC tetramers and capture a broader portion of the sequence repertoire for a given peptide-MHC. Analyzing the response in unexposed individuals, we find that T cells recognizing peptides conserved amongst coronaviruses are more abundant and tend to have a "memory" phenotype, compared to those unique to SARS-CoV-2. Significantly, CD8+ T cells with these conserved specificities are much more abundant in COVID-19 patients with mild disease versus those with a more severe illness, suggesting a protective role.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Epitopes, T-Lymphocyte/immunology , SARS-CoV-2/immunology , Severity of Illness Index , CD8-Positive T-Lymphocytes/pathology , COVID-19/pathology , Female , Humans , Male
5.
Sci Immunol ; 5(54)2020 12 07.
Article in English | MEDLINE | ID: covidwho-963892

ABSTRACT

SARS-CoV-2-specific antibodies, particularly those preventing viral spike receptor binding domain (RBD) interaction with host angiotensin-converting enzyme 2 (ACE2) receptor, can neutralize the virus. It is, however, unknown which features of the serological response may affect clinical outcomes of COVID-19 patients. We analyzed 983 longitudinal plasma samples from 79 hospitalized COVID-19 patients and 175 SARS-CoV-2-infected outpatients and asymptomatic individuals. Within this cohort, 25 patients died of their illness. Higher ratios of IgG antibodies targeting S1 or RBD domains of spike compared to nucleocapsid antigen were seen in outpatients who had mild illness versus severely ill patients. Plasma antibody increases correlated with decreases in viral RNAemia, but antibody responses in acute illness were insufficient to predict inpatient outcomes. Pseudovirus neutralization assays and a scalable ELISA measuring antibodies blocking RBD-ACE2 interaction were well correlated with patient IgG titers to RBD. Outpatient and asymptomatic individuals' SARS-CoV-2 antibodies, including IgG, progressively decreased during observation up to five months post-infection.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Severity of Illness Index , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/blood , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , COVID-19/blood , COVID-19/genetics , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/blood , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL