Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
2.
Clin Infect Dis ; 2022 May 24.
Article in English | MEDLINE | ID: covidwho-1860837

ABSTRACT

BACKGROUND: Patients with solid or hematological tumors, neurological and immune-inflammatory disorders are potentially fragile subjects at increased risk of experiencing severe COVID-19 and an inadequate response to SARS-CoV-2 vaccination. METHODS: We designed a prospective Italian multicentrer study to assess humoral and T-cell responses to SARS-CoV-2 vaccination in patients (n = 378) with solid tumors (ST), hematological malignancies (HM), neurological disorders (ND) and immunorheumatological diseases (ID). A group of healthy controls was also included. We analyzed the immunogenicity of the primary vaccination schedule and booster dose. RESULTS: The overall seroconversion rate in patients after 2 doses was 62.1%. Significantly lower rates were observed in HM (52.4%) and ID (51.9%) than in ST (95.6%) and ND (70.7%); a lower median antibody level was detected in HM and ID versus ST and ND (P < 0.0001). Similar rates of patients with a positive SARS-CoV-2 T-cell response were found in all disease groups, with a higher level observed in ND. The booster dose improved the humoral response in all disease groups, although to a lesser extent in HM patients, while the T-cell response increased similarly in all groups. In the multivariable logistic model, independent predictors of seroconversion were disease subgroup, treatment type and age. Ongoing treatment known to affect the immune system was associated with the worst humoral response to vaccination (P < 0.0001) but had no effect on T-cell responses. CONCLUSIONS: Immunosuppressive treatment more than disease type per se is a risk factor for a low humoral response after vaccination. The booster dose can improve both humoral and T-cell responses.

3.
EMBO Mol Med ; 14(5): e15326, 2022 05 09.
Article in English | MEDLINE | ID: covidwho-1786385

ABSTRACT

Vaccination against an airborne pathogen is very effective if it induces also the development of mucosal antibodies that can protect against infection. The mRNA-based vaccine-encoding SARS-CoV-2 full-length spike protein (BNT162b2, Pfizer/BioNTech) protects also against infection despite being administered systemically. Here, we show that upon vaccination, cognate IgG molecules are also found in the saliva and are more abundant in SARS-CoV-2 previously exposed subjects, paralleling the development of plasma IgG. The antibodies titer declines at 3 months from vaccination. We identified a concentration of specific IgG in the plasma above which the relevant IgG can be detected in the saliva. Regarding IgA antibodies, we found only protease-susceptible IgA1 antibodies in plasma while they were present at very low levels in the saliva over the course of vaccination of SARS-CoV-2-naïve subjects. Thus, in response to BNT162b2 vaccine, plasma IgG can permeate into mucosal sites and participate in viral protection. It is not clear why IgA1 are detected in low amount, they may be proteolytically cleaved.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin A , Immunoglobulin G , Saliva , Vaccination
4.
Front Oncol ; 12: 855723, 2022.
Article in English | MEDLINE | ID: covidwho-1775732

ABSTRACT

Background: Frail patients are considered at relevant risk of complications due to coronavirus disease 2019 (COVID-19) infection and, for this reason, are prioritized candidates for vaccination. As these patients were originally not included in the registration trials, fear related to vaccine adverse events and disease worsening was one of the reasons for vaccine hesitancy. Herein, we report the safety profile of the prospective, multicenter, national VAX4FRAIL study (NCT04848493) to evaluate vaccines in a large trans-disease cohort of patients with solid or hematological malignancies and neurological and rheumatological diseases. Methods: Between March 3 and September 2, 2021, 566 patients were evaluable for safety endpoint: 105 received the mRNA-1273 vaccine and 461 the BNT162b2 vaccine. Frail patients were defined per protocol as patients under treatment with hematological malignancies (n = 131), solid tumors (n = 191), immune-rheumatological diseases (n = 86), and neurological diseases (n = 158), including multiple sclerosis and generalized myasthenia. The impact of the vaccination on the health status of patients was assessed through a questionnaire focused on the first week after each vaccine dose. Results: The most frequently reported moderate-severe adverse events were pain at the injection site (60.3% after the first dose, 55.4% after the second), fatigue (30.1%-41.7%), bone pain (27.4%-27.2%), and headache (11.8%-18.9%). Risk factors associated with the occurrence of severe symptoms after vaccine administration were identified through a multivariate logistic regression analysis: age was associated with severe fever presentation (younger patients vs. middle-aged vs. older ones), female individuals presented a higher probability of severe pain at the injection site, fatigue, headache, and bone pain; and the mRNA-1237 vaccine was associated with a higher probability of severe pain at the injection site and fever. After the first dose, patients presenting a severe symptom were at a relevant risk of recurrence of the same severe symptom after the second one. Overall, 11 patients (1.9%) after the first dose and 7 (1.2%) after the second one required postponement or suspension of the disease-specific treatment. Finally, two fatal events occurred among our 566 patients. These two events were considered unrelated to the vaccine. Conclusions: Our study reports that mRNA-COVID-19 vaccination is safe also in frail patients; as expected, side effects were manageable and had a minimum impact on patient care path.

5.
Commun Med (Lond) ; 1(1): 32, 2021.
Article in English | MEDLINE | ID: covidwho-1768865

ABSTRACT

BACKGROUND: Persistence of antibodies to SARS-CoV-2 viral infection may depend on several factors and may be related to the severity of disease or to the different symptoms. METHODS: We evaluated the antibody response to SARS-CoV-2 in personnel from 9 healthcare facilities and an international medical school and its association with individuals' characteristics and COVID-19 symptoms in an observational cohort study. We enrolled 4735 subjects (corresponding to 80% of all personnel) for three time points over a period of 8-10 months. For each participant, we determined the rate of antibody increase or decrease over time in relation to 93 features analyzed in univariate and multivariate analyses through a machine learning approach. RESULTS: Here we show in individuals positive for IgG (≥12 AU/mL) at the beginning of the study an increase [p = 0.0002] in antibody response in paucisymptomatic or symptomatic subjects, particularly with loss of taste or smell (anosmia/dysgeusia: OR 2.75, 95% CI 1.753 - 4.301), in a multivariate logistic regression analysis in the first three months. The antibody response persists for at least 8-10 months. CONCLUSIONS: SARS-CoV-2 infection induces a long lasting antibody response that increases in the first months, particularly in individuals with anosmia/dysgeusia. This may be linked to the lingering of SARS-CoV-2 in the olfactory bulb.

6.
Gastro Hep Adv ; 1(2): 194-209, 2022.
Article in English | MEDLINE | ID: covidwho-1747991

ABSTRACT

BACKGROUND AND AIMS: The SARS-CoV-2 pandemic has overwhelmed the treatment capacity of the health care systems during the highest viral diffusion rate. Patients reaching the emergency department had to be either hospitalized (inpatients) or discharged (outpatients). Still, the decision was taken based on the individual assessment of the actual clinical condition, without specific biomarkers to predict future improvement or deterioration, and discharged patients often returned to the hospital for aggravation of their condition. Here, we have developed a new combined approach of omics to identify factors that could distinguish coronavirus disease 19 (COVID-19) inpatients from outpatients. METHODS: Saliva and blood samples were collected over the course of two observational cohort studies. By using machine learning approaches, we compared salivary metabolome of 50 COVID-19 patients with that of 270 healthy individuals having previously been exposed or not to SARS-CoV-2. We then correlated the salivary metabolites that allowed separating COVID-19 inpatients from outpatients with serum biomarkers and salivary microbiota taxa differentially represented in the two groups of patients. RESULTS: We identified nine salivary metabolites that allowed assessing the need of hospitalization. When combined with serum biomarkers, just two salivary metabolites (myo-inositol and 2-pyrrolidineacetic acid) and one serum protein, chitinase 3-like-1 (CHI3L1), were sufficient to separate inpatients from outpatients completely and correlated with modulated microbiota taxa. In particular, we found Corynebacterium 1 to be overrepresented in inpatients, whereas Actinomycetaceae F0332, Candidatus Saccharimonas, and Haemophilus were all underrepresented in the hospitalized population. CONCLUSION: This is a proof of concept that a combined omic analysis can be used to stratify patients independently from COVID-19.

7.
Vaccines (Basel) ; 10(3)2022 Mar 13.
Article in English | MEDLINE | ID: covidwho-1742759

ABSTRACT

Short-term adverse events are common following the BNT162b2 vaccine for SARS-Cov-2 and have been possibly associated with IgG response. We aimed to determine the incidence of adverse reactions to the vaccine and the impact on IgG response. Our study included 4156 health-care professionals who received two doses of the BNT162b2 vaccine 21 days apart and obtained 6113 online questionnaires inquiring about adverse events. The serum response was tested in 2765 subjects 10 days after the second dose. Adverse events, most frequently a local reaction at the site of injection, were reported by 39% of subjects. Multivariate analysis showed that female sex (odds ratio-OR-1.95; 95% confidence interval-CI-1.74-2.19; p < 0.001), younger age (OR 0.98 per year, p < 0.001), second dose of vaccine (OR 1.36, p < 0.001), and previous COVID-19 infection (OR 1.41, p < 0.001) were independently associated with adverse events. IgG response was significantly higher in subjects with adverse events (1110 AU/mL-IQR 345-1630 vs. 386 AU/mL, IQR 261-1350, p < 0.0001), and the association was more pronounced in subjects experiencing myalgia, fever, and lymphadenopathy. We demonstrate that a more pronounced IgG response is associated with specific adverse events, and these are commonly reported by health care professionals after the BNT162b2 vaccine for SARS-Cov-2.

8.
Life Sci Alliance ; 5(6)2022 06.
Article in English | MEDLINE | ID: covidwho-1689580

ABSTRACT

SARS-CoV-2 vaccination has proven effective in inducing an immune response in healthy individuals and is progressively us allowing to overcome the pandemic. Recent evidence has shown that response to vaccination in some vulnerable patients may be diminished, and it has been proposed a booster dose. We tested the kinetic of development of serum antibodies to the SARS-CoV-2 Spike protein, their neutralizing capacity, the CD4 and CD8 IFN-γ T-cell response in 328 subjects, including 131 immunocompromised individuals (cancer, rheumatologic, and hemodialysis patients), 160 health-care workers (HCW) and 37 subjects older than 75 yr, after vaccination with two or three doses of mRNA vaccines. We stratified the patients according to the type of treatment. We found that immunocompromised patients, depending on the type of treatment, poorly respond to SARS-CoV-2 mRNA vaccines. However, an additional booster dose of vaccine induced a good immune response in almost all of the patients except those receiving anti-CD20 antibody. Similarly to HCW, previously infected and vaccinated immunocompromised individuals demonstrate a stronger SARS-CoV-2-specific immune response than those who are vaccinated without prior infection.


Subject(s)
COVID-19 Vaccines/immunology , Immunocompromised Host/immunology , T-Lymphocytes/immunology , /immunology , Aged , Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Humans , Immunization, Secondary , Middle Aged , Neoplasms/immunology , Renal Dialysis
9.
Nat Immunol ; 23(2): 275-286, 2022 02.
Article in English | MEDLINE | ID: covidwho-1661973

ABSTRACT

The humoral arm of innate immunity includes diverse molecules with antibody-like functions, some of which serve as disease severity biomarkers in coronavirus disease 2019 (COVID-19). The present study was designed to conduct a systematic investigation of the interaction of human humoral fluid-phase pattern recognition molecules (PRMs) with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Of 12 PRMs tested, the long pentraxin 3 (PTX3) and mannose-binding lectin (MBL) bound the viral nucleocapsid and spike proteins, respectively. MBL bound trimeric spike protein, including that of variants of concern (VoC), in a glycan-dependent manner and inhibited SARS-CoV-2 in three in vitro models. Moreover, after binding to spike protein, MBL activated the lectin pathway of complement activation. Based on retention of glycosylation sites and modeling, MBL was predicted to recognize the Omicron VoC. Genetic polymorphisms at the MBL2 locus were associated with disease severity. These results suggest that selected humoral fluid-phase PRMs can play an important role in resistance to, and pathogenesis of, COVID-19, a finding with translational implications.


Subject(s)
COVID-19/immunology , Immunity, Humoral , Receptors, Pattern Recognition/immunology , SARS-CoV-2/immunology , Animals , C-Reactive Protein/immunology , C-Reactive Protein/metabolism , COVID-19/metabolism , COVID-19/virology , Case-Control Studies , Chlorocebus aethiops , Complement Activation , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/metabolism , Female , Glycosylation , HEK293 Cells , Host-Pathogen Interactions , Humans , Male , Mannose-Binding Lectin/genetics , Mannose-Binding Lectin/immunology , Mannose-Binding Lectin/metabolism , Phosphoproteins/genetics , Phosphoproteins/immunology , Phosphoproteins/metabolism , Polymorphism, Genetic , Protein Binding , Receptors, Pattern Recognition/genetics , Receptors, Pattern Recognition/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Serum Amyloid P-Component/immunology , Serum Amyloid P-Component/metabolism , Signal Transduction , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
10.
ALTEX ; 39(2): 322­335, 2022.
Article in English | MEDLINE | ID: covidwho-1626699

ABSTRACT

On April 28-29, 2021, 50 scientists from different fields of expertise met for the 3rd online CIAO workshop. The CIAO project "Modelling the Pathogenesis of COVID-19 using the Adverse Outcome Pathway (AOP) framework" aims at building a holistic assembly of the available scientific knowledge on COVID-19 using the AOP framework. An individual AOP depicts the disease progression from the initial contact with the SARS-CoV-2 virus through biological key events (KE) toward an adverse outcome such as respiratory distress, anosmia or multiorgan failure. Assembling the individual AOPs into a network highlights shared KEs as central biological nodes involved in multiple outcomes observed in COVID-19 patients. During the workshop, the KEs and AOPs established so far by the CIAO members were presented and posi­tioned on a timeline of the disease course. Modulating factors influencing the progression and severity of the disease were also addressed as well as factors beyond purely biological phenomena. CIAO relies on an interdisciplinary crowd­sourcing effort, therefore, approaches to expand the CIAO network by widening the crowd and reaching stakeholders were also discussed. To conclude the workshop, it was decided that the AOPs/KEs will be further consolidated, inte­grating virus variants and long COVID when relevant, while an outreach campaign will be launched to broaden the CIAO scientific crowd.


Subject(s)
Adverse Outcome Pathways , COVID-19 , COVID-19/complications , Humans , SARS-CoV-2
11.
Medicina (Kaunas) ; 57(2)2021 Jan 28.
Article in English | MEDLINE | ID: covidwho-1389436

ABSTRACT

Uncertainty analysis is the process of identifying limitations in knowledge and evaluating their implications for scientific conclusions. Uncertainty analysis is a stable component of risk assessment and is increasingly used in decision making on complex health issues. Uncertainties should be identified in a structured way and prioritized according to their likely impact on the outcome of scientific conclusions. Uncertainty is inherent to the rare diseases (RD) area, where research and healthcare have to cope with knowledge gaps due to the rarity of the conditions; yet a systematic approach toward uncertainties is not usually undertaken. The uncertainty issue is particularly relevant to multifactorial RD, whose etiopathogenesis involves environmental factors and genetic predisposition. Three case studies are presented: the newly recognized acute multisystem inflammatory syndrome in children and adolescents associated with SARS-CoV-2 infection; the assessment of risk factors for neural tube defects; and the genotype-phenotype correlation in familial Mediterranean fever. Each case study proposes the initial identification of the main epistemic and sampling uncertainties and their impacts. Uncertainty analysis in RD may present aspects similar to those encountered when conducting risk assessment in data-poor scenarios; therefore, approaches such as expert knowledge elicitation may be considered. The RD community has a main strength in managing uncertainty, as it proactively develops stakeholder involvement, data sharing and open science. The open science approaches can be profitably integrated by structured uncertainty analysis, especially when dealing with multifactorial RD involving environmental and genetic risk factors.


Subject(s)
COVID-19/epidemiology , Familial Mediterranean Fever/epidemiology , Neural Tube Defects/epidemiology , Rare Diseases/epidemiology , Systemic Inflammatory Response Syndrome/epidemiology , Uncertainty , Causality , Familial Mediterranean Fever/genetics , Genotype , Humans , Knowledge , Phenotype , Rare Diseases/etiology , Risk Assessment , Risk Factors , SARS-CoV-2
12.
Front Immunol ; 12: 704110, 2021.
Article in English | MEDLINE | ID: covidwho-1376699

ABSTRACT

Patients diagnosed with malignancy, neurological and immunological disorders, i.e., fragile patients, have been excluded from COVID-19 vaccine trials. However, this population may present immune response abnormalities, and relative reduced vaccine responsiveness. Here we review the limited current evidence on the immune responses to vaccination of patients with different underlying diseases. To address open questions we present the VAX4FRAIL study aimed at assessing immune responses to vaccination in a large transdisease cohort of patients with cancer, neurological and rheumatological diseases.


Subject(s)
COVID-19 Vaccines/administration & dosage , Adult , COVID-19 Vaccines/immunology , Clinical Protocols , Humans , Immune System Diseases/immunology , Immunocompromised Host/immunology , Neoplasms/immunology , Nervous System Diseases/immunology , Patient Selection , Prospective Studies
13.
JCI Insight ; 6(18)2021 09 22.
Article in English | MEDLINE | ID: covidwho-1350083

ABSTRACT

The inflammatory and IFN pathways of innate immunity play a key role in the resistance and pathogenesis of coronavirus disease 2019 (COVID-19). Innate sensors and SARS-CoV-2-associated molecular patterns (SAMPs) remain to be completely defined. Here, we identified single-stranded RNA (ssRNA) fragments from the SARS-CoV-2 genome as direct activators of endosomal TLR7/8 and MyD88 pathway. The same sequences induced human DC activation in terms of phenotype and function, such as IFN and cytokine production and Th1 polarization. A bioinformatic scan of the viral genome identified several hundreds of fragments potentially activating TLR7/8, suggesting that products of virus endosomal processing potently activate the IFN and inflammatory responses downstream of these receptors. In vivo, SAMPs induced MyD88-dependent lung inflammation characterized by accumulation of proinflammatory and cytotoxic mediators and immune cell infiltration, as well as splenic DC phenotypical maturation. These results identified TLR7/8 as a crucial cellular sensor of ssRNAs encoded by SARS-CoV-2 involved in host resistance and the disease pathogenesis of COVID-19.


Subject(s)
COVID-19/virology , Immunity, Innate , RNA, Viral/analysis , SARS-CoV-2/genetics , Toll-Like Receptor 7/immunology , COVID-19/genetics , COVID-19/immunology , Humans , Lung/virology , SARS-CoV-2/immunology
14.
J Leukoc Biol ; 111(4): 817-836, 2022 04.
Article in English | MEDLINE | ID: covidwho-1340268

ABSTRACT

The MS4A gene family encodes 18 tetraspanin-like proteins, most of which with unknown function. MS4A1 (CD20), MS4A2 (FcεRIß), MS4A3 (HTm4), and MS4A4A play important roles in immunity, whereas expression and function of other members of the family are unknown. The present investigation was designed to obtain an expression fingerprint of MS4A family members, using bioinformatics analysis of public databases, RT-PCR, and protein analysis when possible. MS4A3, MS4A4A, MS4A4E, MS4A6A, MS4A7, and MS4A14 were expressed by myeloid cells. MS4A6A and MS4A14 were expressed in circulating monocytes and decreased during monocyte-to-Mϕ differentiation in parallel with an increase in MS4A4A expression. Analysis of gene expression regulation revealed a strong induction of MS4A4A, MS4A6A, MS4A7, and MS4A4E by glucocorticoid hormones. Consistently with in vitro findings, MS4A4A and MS4A7 were expressed in tissue Mϕs from COVID-19 and rheumatoid arthritis patients. Interestingly, MS4A3, selectively expressed in myeloid precursors, was found to be a marker of immature circulating neutrophils, a cellular population associated to COVID-19 severe disease. The results reported here show that members of the MS4A family are differentially expressed and regulated during myelomonocytic differentiation, and call for assessment of their functional role and value as therapeutic targets.


Subject(s)
COVID-19 , Membrane Proteins , Antigens, CD20 , Family , Humans , Membrane Proteins/genetics , Monocytes/metabolism
15.
Journal of Clinical Investigation ; 131(12):1-5, 2021.
Article in English | ProQuest Central | ID: covidwho-1334629

ABSTRACT

BACKGROUND. The COVID-19 vaccines currently in use require 2 doses to achieve optimal protection. Currently, there is no indication as to whether individuals who have been exposed to SARS-CoV-2 should be vaccinated, or whether they should receive 1 or 2 vaccine doses. METHODS. We tested the antibody response developed after administration of the Pfizer/BioNTech vaccine in 124 health care professionals, of whom 57 had a previous history of SARS-CoV-2 exposure with or without symptoms. RESULTS. Postvaccine antibodies in SARS-CoV-2-exposed individuals increased exponentially within 5 to 18 days after the first dose compared to naive subjects (P < 0.0001). In a multivariate linear regression (LR) model we showed that the antibody response depended on the IgG prevaccine titer and on the exposure to SARS-CoV-2. In symptomatic SARS-CoV-2-exposed individuals, IgG reached a plateau after the second dose, and those who voluntarily refrained from receiving the second dose (n = 7) retained their antibody response. Gastrointestinal symptoms, muscle pain, and fever markedly positively correlated with increased IgG responses. By contrast, all asymptomatic/paucisymptomatic and unexposed individuals showed an important increase after the second dose. CONCLUSION. One vaccine dose is sufficient in symptomatic SARS-CoV-2-exposed subjects to reach a high titer of antibodies, suggesting no need for a second dose, particularly in light of current vaccine shortage.

17.
Sci Rep ; 11(1): 12312, 2021 06 10.
Article in English | MEDLINE | ID: covidwho-1265974

ABSTRACT

Lombardy is the Italian region most affected by COVID-19. We tested the presence of plasma anti-SARS-CoV-2 IgG antibodies in 3985 employees across 7 healthcare facilities in areas of Lombardy with different exposure to the SARS-CoV-2 epidemic. Subjects filled a questionnaire to self-report on COVID-19 symptoms, comorbidities, smoking, regular or remote working, and the exposure to COVID-infected individuals. We show that the number of individuals exposed to the virus depended on the geographical location of the facility, ranging between 3 and 43%, consistent with the spatial variation of COVID-19 incidence in Lombardy, and correlated with family interactions. We observed a higher prevalence of females than males positive for IgG, however the level of antibodies was similar, suggesting a comparable magnitude of the anti-spike antibody response. IgG positivity among smokers was lower (7.4% vs 13.5%) although without difference in IgG plasma levels. We observed 11.9% of IgG positive asymptomatic individuals and another 23.1% with one or two symptoms. Interestingly, among the IgG positive population, 81.2% of subjects with anosmia/dysgeusia and fever were SARS-CoV-2 infected, indicating that these symptoms are strongly associated to COVID-19. In conclusion, the frequency of IgG positivity and SARS-CoV-2 infection is dependent on the geographical exposure to the virus and primarily to family rather than hospital exposure.


Subject(s)
Antibodies, Viral/blood , COVID-19/blood , Immunoglobulin G/blood , SARS-CoV-2/isolation & purification , Adaptive Immunity , Adult , Aged , Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19/immunology , COVID-19 Serological Testing , Female , Humans , Immunoglobulin G/immunology , Incidence , Italy/epidemiology , Male , Middle Aged , Risk Factors , SARS-CoV-2/immunology
20.
J Clin Invest ; 131(12)2021 06 15.
Article in English | MEDLINE | ID: covidwho-1218257

ABSTRACT

BACKGROUNDThe COVID-19 vaccines currently in use require 2 doses to achieve optimal protection. Currently, there is no indication as to whether individuals who have been exposed to SARS-CoV-2 should be vaccinated, or whether they should receive 1 or 2 vaccine doses.METHODSWe tested the antibody response developed after administration of the Pfizer/BioNTech vaccine in 124 health care professionals, of whom 57 had a previous history of SARS-CoV-2 exposure with or without symptoms.RESULTSPostvaccine antibodies in SARS-CoV-2-exposed individuals increased exponentially within 5 to 18 days after the first dose compared to naive subjects (P < 0.0001). In a multivariate linear regression (LR) model we showed that the antibody response depended on the IgG prevaccine titer and on the exposure to SARS-CoV-2. In symptomatic SARS-CoV-2-exposed individuals, IgG reached a plateau after the second dose, and those who voluntarily refrained from receiving the second dose (n = 7) retained their antibody response. Gastrointestinal symptoms, muscle pain, and fever markedly positively correlated with increased IgG responses. By contrast, all asymptomatic/paucisymptomatic and unexposed individuals showed an important increase after the second dose.CONCLUSIONOne vaccine dose is sufficient in symptomatic SARS-CoV-2-exposed subjects to reach a high titer of antibodies, suggesting no need for a second dose, particularly in light of current vaccine shortage.TRIAL REGISTRATIONClinicalTrials.gov NCT04387929.FUNDINGDolce & Gabbana and the Italian Ministry of Health (Ricerca corrente).


Subject(s)
Antibodies, Viral , Antibody Formation/drug effects , COVID-19 Vaccines/administration & dosage , COVID-19 , SARS-CoV-2 , Adult , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/immunology , COVID-19 Vaccines/immunology , Female , Humans , Male , Middle Aged , SARS-CoV-2/immunology , SARS-CoV-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL