Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
2.
Viruses ; 14(5):1089, 2022.
Article in English | MDPI | ID: covidwho-1857370

ABSTRACT

Coronavirus disease 2019 (COVID-19) due to SARS-CoV-2 is associated with a wide spectrum of disease, ranging from asymptomatic infection to acute respiratory distress syndrome. Some biomarkers may predict disease severity. Among them, the anti-SARS-CoV-2 antibody response has been related to severe disease. The aim of this study was to assess the correlation between the anti-SARS-CoV-2 serological response and COVID-19 outcome. Demographic, clinical, and biological data from nasopharyngeal-PCR confirmed COVID-19 hospitalized patients were prospectively collected between April and August 2020 at our institution. All patients had serial weekly serology testing for a maximum of three blood samples or until discharge. Two different serological assays were used: a chemiluminescent assay and an in-house developed Luminex immunoassay. Kinetics of the serological response and correlation between the antibody titers and outcome were assessed. Among the 70 patients enrolled in the study, 22 required invasive ventilation, 29 required non-invasive ventilation or oxygen supplementation, and 19 did not require any oxygen supplementation. Median duration of symptoms upon admission for the three groups were 13, 8, and 9 days, respectively. Antibody titers gradually increased for up to 3 weeks since the onset of symptoms for patients requiring oxygen supplementation with significantly higher antibody titers for patients requiring invasive ventilation. Antibody titers on admission were also significantly higher in severely ill patients and serology performed well in predicting the necessity of invasive ventilation (AUC: 0.79, 95% CI: 0.67–0.9). Serology testing at admission may be a good indicator to identify severe COVID-19 patients who will require invasive mechanical ventilation.

3.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-336793

ABSTRACT

ABSTRACT Background Administration of plasma therapy may contribute to viral control and survival of COVID-19 patients receiving B-cell depleting agents that hinder the endogenous humoral response. However, little is known on the impact of anti-CD20 pre-exposition and the use of different sources of plasma (convalescent versus vaccinated) on the kinetics of SARS-CoV-2-specific antibodies and viral evolution after plasma therapy. Methods Eligible COVID-19 patients (n = 36), half of them after anti-CD20 targeted therapy, were treated with therapeutic plasma from convalescent (n = 17) or mRNA-vaccinated (n = 19) donors. Each plasma-transfused patient was thoroughly monitored over time by anti-S IgG quantification and whole-genome SARS-CoV-2 sequencing. Results The majority of anti-CD20 pre-exposed patients (15/18) showed progressive declines of anti-S protein IgG titers following plasma therapy, indicating that they mostly relied on the passive transfer of anti-SARS-CoV-2 antibodies. Such antibody kinetics correlated with prolonged infection before virus clearance, contrasting with the endogenous humoral response predominantly present in patients who had not received B-cell depleting agents (15/18). No relevant differences were observed between patients treated with plasma from convalescent and/or vaccinated donors. Finally, 4/30 genotyped patients showed increased intra-host viral evolution and 3/30 included 1 to 4 spike mutations, potentially associated to immune escape. Conclusions Convalescent and/or vaccinated plasma therapy may provide anti-SARS-CoV-2 antibodies and clinical benefit to B-cell depleted COVID-19 patients. Only a limited number of patients acquired viral mutations prior to clinical recovery, yet our study further emphasizes the need for long-term surveillance for intra-host variant evolution, to guide best therapeutic strategies.

4.
Anaesth Crit Care Pain Med ; : 101098, 2022 May 06.
Article in English | MEDLINE | ID: covidwho-1821095

ABSTRACT

BACKGROUND: Solid-organ transplantation (SOT) from SARS-CoV-2 positive donors could be a life-saving opportunity worth grasping. We perform a systematic review of SOT using SARS-CoV-2 positive donors. METHODS: The search was performed in PubMed, Cochrane COVID-19 Study Register, and Web of Science databases, including studies conducted till the 31th of December 2021 from SOT adult recipients from a donor with past or current SARS-CoV-2 infection. Outcomes were viral transmission, COVID-19 symptoms, mortality, hospital stay, and complications. PROSPERO Register Number: CRD42022303242 FINDINGS: Sixty-nine recipients received 48 kidneys, 18 livers and 3 hearts from 57 donors. Six additional transplants from positive lungs were identified. IgG + anti-SARS-CoV-2 titers were detected among 10/16 recipients; only 4% (3/69) recipients were vaccinated. Non-lung transplant recipients received organs from 10/57 (17.5%) donors with persistent COVID-19 and SARS-CoV-2 RNA was detected (median 32 Cycle threshold [Ct]) in 18/57, at procurement. Among non-lung transplant recipients, SARS-CoV-2 viral transmission was not documented. Four patients presented delayed graft dysfunction, two patients acute rejection, and two patients died of septic shock. The median (IQR) hospital stay was 18 (11-28) days in recipients from symptomatic donors. Viral transmission occurred from three lung donors to their recipients, who developed COVID-19 symptoms. One of the recipients subsequently died. CONCLUSION: Use of non-lung (kidney, liver and heart) organs from SARS-CoV-2 positive donors seem to be a safe practice, with a low risk of transmission irrespective of the presence of symptoms at the time of procurement. Low viral replication (Ct > 30) was safe among non-lung donors, even if persistently symptomatic at procurement.

6.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-321965

ABSTRACT

• Background: Late 2019, a new highly contagious corona-virus SARS-CoV-2 has emerged in Wuhan, China, causing within two month a pandemic with the highest disease burden in elderly and people with pre-existing medical conditions. The pandemic has highlighted that new and more flexible clinical trial approaches, such as trial platforms, are needed to assess the efficacy and safety of interventions in a timely manner. The two existing Swiss cohorts of immunocompromised patients (i.e. Swiss HIV Cohort Study (SHCS) and Swiss Transplant Cohort Study (STCS)) are an ideal foundation to set-up a trial platform in Switzerland leveraging routinely collected data. Within a newly founded trial platform we plan to assess the efficacy of the first two mRNA SARS-CoV-2 vaccines that reached market authorisation in Switzerland in the frame of a pilot randomised controlled trial (RCT) while at the same time assessing the functionality of the trial platform.• Methods: We will conduct a multicenter randomised controlled, open-label, 2-arm sub-study pilot trial of a platform trial nested into two Swiss cohorts. Patients included in the SHCS or the STCS will be eligible for randomization to either receiving the mRNA vaccine Comirnaty® (Pfizer / BioNTech) or the Covid-19 mRNA Vaccine Moderna®. The primary clinical outcome will be change in pan-lg antibody response (pan-Ig anti-S1-RBD;baseline vs. three months after first vaccination). The pilot study will also enable us to assess endpoints related to trial conduct feasibility (i.e. duration of RCT set-up;time of patient recruitment;patient consent rate;proportion of missing data). Assuming vaccine reactivity of 90% in both vaccine groups we power our trial, using a non-inferiority margin such that a 95% two-sided confidence interval excludes a difference in favour of the reference group of more than 10%. A sample size of 380 (190 in each treatment arm) is required for a statistical power of 90% and a type I error of 0.025. The study is funded by the Swiss National Science Foundation (National Research Program NRP 78, ‘Covid-19’). • Discussion: This study will provide crucial information about the efficacy and safety of the mRNA SARS-CoV-2 vaccines in HIV patients and organ transplant recipients. Furthermore, this project has the potential to pave the way for further platform trials in Switzerland. Trial registration : NCT04805125

7.
Clin Infect Dis ; 73(11): e3996-e4004, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1562033

ABSTRACT

BACKGROUND: Remdesivir is efficacious for severe coronavirus disease 2019 (COVID-19) in adults, but data in pregnant women are limited. We describe outcomes in the first 86 pregnant women with severe COVID-19 who were treated with remdesivir. METHODS: The reported data span 21 March to 16 June 2020 for hospitalized pregnant women with polymerase chain reaction-confirmed severe acute respiratory syndrome coronavirus 2 infection and room air oxygen saturation ≤94% whose clinicians requested remdesivir through the compassionate use program. The intended remdesivir treatment course was 10 days (200 mg on day 1, followed by 100 mg for days 2-10, given intravenously). RESULTS: Nineteen of 86 women delivered before their first dose and were reclassified as immediate "postpartum" (median postpartum day 1 [range, 0-3]). At baseline, 40% of pregnant women (median gestational age, 28 weeks) required invasive ventilation, in contrast to 95% of postpartum women (median gestational age at delivery 30 weeks). By day 28 of follow-up, the level of oxygen requirement decreased in 96% and 89% of pregnant and postpartum women, respectively. Among pregnant women, 93% of those on mechanical ventilation were extubated, 93% recovered, and 90% were discharged. Among postpartum women, 89% were extubated, 89% recovered, and 84% were discharged. Remdesivir was well tolerated, with a low incidence of serious adverse events (AEs) (16%). Most AEs were related to pregnancy and underlying disease; most laboratory abnormalities were grade 1 or 2. There was 1 maternal death attributed to underlying disease and no neonatal deaths. CONCLUSIONS: Among 86 pregnant and postpartum women with severe COVID-19 who received compassionate-use remdesivir, recovery rates were high, with a low rate of serious AEs.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Adenosine Monophosphate/analogs & derivatives , Adult , Alanine/analogs & derivatives , COVID-19/drug therapy , Compassionate Use Trials , Female , Humans , Infant , Pregnancy , Pregnancy Complications, Infectious/drug therapy , Pregnant Women , SARS-CoV-2
8.
Expert Rev Anti Infect Ther ; 20(5): 663-680, 2022 May.
Article in English | MEDLINE | ID: covidwho-1545821

ABSTRACT

INTRODUCTION: In solid organ transplant (SOT) recipients, viral infections are associated with direct morbidity and mortality and may influence long-term allograft outcomes. Prevention of viral infections by vaccination, antiviral prophylaxis, and behavioral measures is therefore of paramount importance. AREAS COVERED: We searched Pubmed to select publications to review current preventive strategies against the most important viral infections in SOT recipients, including SARS-CoV-2, influenza, CMV, and other herpesvirus, viral hepatitis, measles, mumps, rubella, and BK virus. EXPERT OPINION: The clinical significance of the reduced humoral response following mRNA SARS-CoV-2 vaccines in SOT recipients still needs to be better clarified, in particular with regard to the vaccines' efficacy in preventing severe disease. Although a third dose improves immunogenicity and is already integrated into routine practice in several countries, further research is still needed to explore additional interventions. In the upcoming years, further data are expected to better delineate the role of virus-specific cell mediated immune monitoring for the prevention of CMV and potentially other viral diseases, and the role of the letermovir in the prevention of CMV in SOT recipients. Future studies including clinical endpoints will hopefully facilitate the integration of successful new influenza vaccination strategies into clinical practice.


Subject(s)
COVID-19 , Cytomegalovirus Infections , Influenza, Human , Organ Transplantation , Antiviral Agents/therapeutic use , COVID-19/prevention & control , COVID-19 Vaccines , Cytomegalovirus Infections/prevention & control , Humans , Influenza, Human/drug therapy , Influenza, Human/prevention & control , Organ Transplantation/adverse effects , SARS-CoV-2 , Transplant Recipients
9.
Trials ; 22(1): 724, 2021 Oct 21.
Article in English | MEDLINE | ID: covidwho-1477452

ABSTRACT

BACKGROUND: Late 2019, a new highly contagious coronavirus SARS-CoV-2 has emerged in Wuhan, China, causing within 2 months a pandemic with the highest disease burden in elderly and people with pre-existing medical conditions. The pandemic has highlighted that new and more flexible clinical trial approaches, such as trial platforms, are needed to assess the efficacy and safety of interventions in a timely manner. The two existing Swiss cohorts of immunocompromised patients (i.e., Swiss HIV Cohort Study (SHCS) and Swiss Transplant Cohort Study (STCS)) are an ideal foundation to set-up a trial platform in Switzerland leveraging routinely collected data. Within a newly founded trial platform, we plan to assess the efficacy of the first two mRNA SARS-CoV-2 vaccines that reached market authorization in Switzerland in the frame of a pilot randomized controlled trial (RCT) while at the same time assessing the functionality of the trial platform. METHODS: We will conduct a multicenter randomized controlled, open-label, 2-arm sub-study pilot trial of a platform trial nested into two Swiss cohorts. Patients included in the SHCS or the STCS will be eligible for randomization to either receiving the mRNA vaccine Comirnaty® (Pfizer/BioNTech) or the COVID-19 mRNA Vaccine Moderna®. The primary clinical outcome will be change in pan-lg antibody response (pan-Ig anti-S1-RBD; baseline vs. 3 months after first vaccination; binary outcome, considering ≥ 0.8 units/ml as a positive antibody response). The pilot study will also enable us to assess endpoints related to trial conduct feasibility (i.e., duration of RCT set-up; time of patient recruitment; patient consent rate; proportion of missing data). Assuming vaccine reactivity of 90% in both vaccine groups, we power our trial, using a non-inferiority margin such that a 95% two-sided confidence interval excludes a difference in favor of the reference group of more than 10%. A sample size of 380 (190 in each treatment arm) is required for a statistical power of 90% and a type I error of 0.025. The study is funded by the Swiss National Science Foundation (National Research Program NRP 78, "COVID-19"). DISCUSSION: This study will provide crucial information about the efficacy and safety of the mRNA SARS-CoV-2 vaccines in HIV patients and organ transplant recipients. Furthermore, this project has the potential to pave the way for further platform trials in Switzerland. TRIAL REGISTRATION: ClinicalTrials.gov NCT04805125 . Registered on March 18, 2021.


Subject(s)
COVID-19 , Viral Vaccines , Aged , COVID-19 Vaccines , Humans , Immunocompromised Host , Multicenter Studies as Topic , Pilot Projects , RNA, Messenger , Randomized Controlled Trials as Topic , SARS-CoV-2
10.
Transpl Int ; 34(10): 1776-1788, 2021 10.
Article in English | MEDLINE | ID: covidwho-1373921

ABSTRACT

In response to the COVID-19 pandemic, SARS-CoV-2 vaccines have been developed at an unparalleled speed, with 14 SARS-CoV-2 vaccines currently authorized. Solid-organ transplant (SOT) recipients are at risk for developing a higher rate of COVID-19-related complications and therefore they are at priority for immunization against SARS-CoV-2. Preliminary data suggest that although SARS-CoV-2 vaccines are safe in SOT recipients (with similar rate of adverse events than in the general population), the antibody responses are decreased in this population. Risk factors for poor vaccine immunogenicity include older age, shorter time from transplantation, use of mycophenolate and belatacept, and worse allograft function. SOT recipients should continue to be advised to maintain hand hygiene, use of facemasks, and social distancing after SARS-CoV-2 vaccine. Vaccination of household contacts should be also prioritized. Although highly encouraged for research purposes, systematic assessment in clinical practice of humoral and cellular immune responses after SARS-CoV-2 vaccination is controversial, since correlation between immunological findings and clinical protection from severe COVID-19, and cutoffs for protection are currently unknown in SOT recipients. Alternative immunization schemes, including a booster dose, higher doses, and modulation of immunosuppression during vaccination, need to be assessed in the context of well-designed clinical trials.


Subject(s)
COVID-19 , Organ Transplantation , Aged , COVID-19 Vaccines , Humans , Pandemics , SARS-CoV-2 , Transplant Recipients , Vaccination
11.
J Thorac Dis ; 13(11): 6673-6694, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1353026

ABSTRACT

Viral infections account for up to 30% of all infectious complications in lung transplant recipients, remaining a significant cause of morbidity and even mortality. Impact of viral infections is not only due to the direct effects of viral replication, but also to immunologically-mediated lung injury that may lead to acute rejection and chronic lung allograft dysfunction. This has particularly been seen in infections caused by herpesviruses and respiratory viruses. The implementation of universal preventive measures against cytomegalovirus (CMV) and influenza (by means of antiviral prophylaxis and vaccination, respectively) and administration of early antiviral treatment have reduced the burden of these diseases and potentially their role in affecting allograft outcomes. New antivirals against CMV for prophylaxis and for treatment of antiviral-resistant CMV infection are currently being evaluated in transplant recipients, and may continue to improve the management of CMV in lung transplant recipients. However, new therapeutic and preventive strategies are highly needed for other viruses such as respiratory syncytial virus (RSV) or parainfluenza virus (PIV), including new antivirals and vaccines. This is particularly important in the advent of the COVID-19 pandemic, for which several unanswered questions remain, in particular on the best antiviral and immunomodulatory regimen for decreasing mortality specifically in lung transplant recipients. In conclusion, the appropriate management of viral complications after transplantation remain an essential step to continue improving survival and quality of life of lung transplant recipients.

13.
BMJ Open ; 11(7): e049232, 2021 07 05.
Article in English | MEDLINE | ID: covidwho-1297975

ABSTRACT

OBJECTIVE: To assess the SARS-CoV-2 transmission in healthcare workers (HCWs) using seroprevalence as a surrogate marker of infection in our tertiary care centre according to exposure. DESIGN: Seroprevalence cross-sectional study. SETTING: Single centre at the end of the first COVID-19 wave in Lausanne, Switzerland. PARTICIPANTS: 1874 of 4074 responders randomly selected (46% response rate), stratified by work category among the 13 474 (13.9%) HCWs. MAIN OUTCOME MEASURES: Evaluation of SARS-CoV-2 serostatus paired with a questionnaire of SARS-CoV-2 acquisition risk factors internal and external to the workplace. RESULTS: The overall SARS-CoV-2 seroprevalence rate among HCWs was 10.0% (95% CI 8.7% to 11.5%). HCWs with daily patient contact did not experience increased rates of seropositivity relative to those without (10.3% vs 9.6%, respectively, p=0.64). HCWs with direct contact with patients with COVID-19 or working in COVID-19 units did not experience increased seropositivity rates relative to their counterparts (10.4% vs 9.8%, p=0.69 and 10.6% vs 9.9%, p=0.69, respectively). However, specific locations of contact with patients irrespective of COVID-19 status-in patient rooms or reception areas-did correlate with increased rates of seropositivity (11.9% vs 7.5%, p=0.019 and 14.3% vs 9.2%, p=0.025, respectively). In contrast, HCWs with a suspected or proven SARS-CoV-2-infected household contact had significantly higher seropositivity rates than those without such contacts (19.0% vs 8.7%, p<0.001 and 42.1% vs 9.4%, p<0.001, respectively). Finally, consistent use of a mask on public transportation correlated with decreased seroprevalence (5.3% for mask users vs 11.2% for intermittent or no mask use, p=0.030). CONCLUSIONS: The overall seroprevalence was 10% without significant differences in seroprevalence between HCWs exposed to patients with COVID-19 and HCWs not exposed. This suggests that, once fully in place, protective measures limited SARS-CoV-2 occupational acquisition within the hospital environment. SARS-CoV-2 seroconversion among HCWs was associated primarily with community risk factors, particularly household transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Cross-Sectional Studies , Health Personnel , Humans , Seroepidemiologic Studies , Switzerland/epidemiology , Tertiary Care Centers
15.
Front Immunol ; 12: 666163, 2021.
Article in English | MEDLINE | ID: covidwho-1273338

ABSTRACT

The reason why most individuals with COVID-19 have relatively limited symptoms while other develop respiratory distress with life-threatening complications remains unknown. Increasing evidence suggests that COVID-19 associated adverse outcomes mainly rely on dysregulated immunity. Here, we compared transcriptomic profiles of blood cells from 103 patients with different severity levels of COVID-19 with that of 27 healthy and 22 influenza-infected individuals. Data provided a complete overview of SARS-CoV-2-induced immune signature, including a dramatic defect in IFN responses, a reduction of toxicity-related molecules in NK cells, an increased degranulation of neutrophils, a dysregulation of T cells, a dramatic increase in B cell function and immunoglobulin production, as well as an important over-expression of genes involved in metabolism and cell cycle in patients infected with SARS-CoV-2 compared to those infected with influenza viruses. These features also differed according to COVID-19 severity. Overall and specific gene expression patterns across groups can be visualized on an interactive website (https://bix.unil.ch/covid/). Collectively, these transcriptomic host responses to SARS-CoV-2 infection are discussed in the context of current studies, thereby improving our understanding of COVID-19 pathogenesis and shaping the severity level of COVID-19.


Subject(s)
COVID-19/immunology , Influenza, Human/immunology , Humans , SARS-CoV-2/immunology , Transcriptome
17.
Am J Transplant ; 21(5): 1789-1800, 2021 05.
Article in English | MEDLINE | ID: covidwho-897176

ABSTRACT

Solid organ transplant (SOT) recipients are exposed to respiratory viral infection (RVI) during seasonal epidemics; however, the associated burden of disease has not been fully characterized. We describe the epidemiology and outcomes of RVI in a cohort enrolling 3294 consecutive patients undergoing SOT from May 2008 to December 2015 in Switzerland. Patient and allograft outcomes, and RVI diagnosed during routine clinical practice were prospectively collected. Median follow-up was 3.4 years (interquartile range 1.61-5.56). Six hundred ninety-six RVIs were diagnosed in 151/334 (45%) lung and 265/2960 (9%) non-lung transplant recipients. Cumulative incidence was 60% (95% confidence interval [CI] 53%-69%) in lung and 12% (95% CI 11%-14%) in non-lung transplant recipients. RVI led to 17.9 (95% CI 15.7-20.5) hospital admissions per 1000 patient-years. Intensive care unit admission was required in 4% (27/691) of cases. Thirty-day all-cause case fatality rate was 0.9% (6/696). Using proportional hazard models we found that RVI (adjusted hazard ratio [aHR] 2.45; 95% CI 1.62-3.73), lower respiratory tract RVI (aHR 3.45; 95% CI 2.15-5.52), and influenza (aHR 3.57; 95% CI 1.75-7.26) were associated with graft failure or death. In this cohort of SOT recipients, RVI caused important morbidity and may affect long-term outcomes, underlying the need for improved preventive strategies.


Subject(s)
Influenza, Human , Organ Transplantation , Respiratory Tract Infections , Cohort Studies , Humans , Influenza, Human/epidemiology , Organ Transplantation/adverse effects , Prospective Studies , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/etiology , Seasons , Switzerland , Transplant Recipients
18.
Am J Transplant ; 21(3): 925-937, 2021 03.
Article in English | MEDLINE | ID: covidwho-977459

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exploded onto the world stage in early 2020. The impact on solid organ transplantation (SOT) has been profound affecting potential donors, candidates, and recipients. Importantly, decreased donations and the pressure of limited resources placed on health care by the pandemic also disrupted transplant systems. We address the impact of COVID-19 on organ transplantation globally and review current understanding of the epidemiology, outcomes, diagnosis, and treatment of COVID-19 in SOT recipients.


Subject(s)
COVID-19/epidemiology , Organ Transplantation/trends , Pandemics , SARS-CoV-2 , Tissue Donors/supply & distribution , Tissue and Organ Procurement/methods , Transplant Recipients/statistics & numerical data , Comorbidity , Humans
19.
N Engl J Med ; 384(6): 497-511, 2021 02 11.
Article in English | MEDLINE | ID: covidwho-953632

ABSTRACT

BACKGROUND: World Health Organization expert groups recommended mortality trials of four repurposed antiviral drugs - remdesivir, hydroxychloroquine, lopinavir, and interferon beta-1a - in patients hospitalized with coronavirus disease 2019 (Covid-19). METHODS: We randomly assigned inpatients with Covid-19 equally between one of the trial drug regimens that was locally available and open control (up to five options, four active and the local standard of care). The intention-to-treat primary analyses examined in-hospital mortality in the four pairwise comparisons of each trial drug and its control (drug available but patient assigned to the same care without that drug). Rate ratios for death were calculated with stratification according to age and status regarding mechanical ventilation at trial entry. RESULTS: At 405 hospitals in 30 countries, 11,330 adults underwent randomization; 2750 were assigned to receive remdesivir, 954 to hydroxychloroquine, 1411 to lopinavir (without interferon), 2063 to interferon (including 651 to interferon plus lopinavir), and 4088 to no trial drug. Adherence was 94 to 96% midway through treatment, with 2 to 6% crossover. In total, 1253 deaths were reported (median day of death, day 8; interquartile range, 4 to 14). The Kaplan-Meier 28-day mortality was 11.8% (39.0% if the patient was already receiving ventilation at randomization and 9.5% otherwise). Death occurred in 301 of 2743 patients receiving remdesivir and in 303 of 2708 receiving its control (rate ratio, 0.95; 95% confidence interval [CI], 0.81 to 1.11; P = 0.50), in 104 of 947 patients receiving hydroxychloroquine and in 84 of 906 receiving its control (rate ratio, 1.19; 95% CI, 0.89 to 1.59; P = 0.23), in 148 of 1399 patients receiving lopinavir and in 146 of 1372 receiving its control (rate ratio, 1.00; 95% CI, 0.79 to 1.25; P = 0.97), and in 243 of 2050 patients receiving interferon and in 216 of 2050 receiving its control (rate ratio, 1.16; 95% CI, 0.96 to 1.39; P = 0.11). No drug definitely reduced mortality, overall or in any subgroup, or reduced initiation of ventilation or hospitalization duration. CONCLUSIONS: These remdesivir, hydroxychloroquine, lopinavir, and interferon regimens had little or no effect on hospitalized patients with Covid-19, as indicated by overall mortality, initiation of ventilation, and duration of hospital stay. (Funded by the World Health Organization; ISRCTN Registry number, ISRCTN83971151; ClinicalTrials.gov number, NCT04315948.).


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Hydroxychloroquine/therapeutic use , Interferon beta-1a/therapeutic use , Lopinavir/therapeutic use , Adenosine Monophosphate/therapeutic use , Aged , Alanine/therapeutic use , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , COVID-19/mortality , Drug Therapy, Combination , Female , Hospital Mortality , Hospitalization , Humans , Intention to Treat Analysis , Kaplan-Meier Estimate , Length of Stay , Male , Middle Aged , Respiration, Artificial , Treatment Failure
20.
PLoS One ; 15(11): e0240781, 2020.
Article in English | MEDLINE | ID: covidwho-926469

ABSTRACT

BACKGROUND: This study aims to describe the epidemiology of COVID-19 patients in a Swiss university hospital. METHODS: This retrospective observational study included all adult patients hospitalized with a laboratory confirmed SARS-CoV-2 infection from March 1 to March 25, 2020. We extracted data from electronic health records. The primary outcome was the need to mechanical ventilation at day 14. We used multivariate logistic regression to identify risk factors for mechanical ventilation. Follow-up was of at least 14 days. RESULTS: 145 patients were included in the multivariate model, of whom 36 (24.8%) needed mechanical ventilation at 14 days. The median time from symptoms onset to mechanical ventilation was 9·5 days (IQR 7.00, 12.75). Multivariable regression showed increased odds of mechanical ventilation with age (OR 1.09 per year, 95% CI 1.03-1.16, p = 0.002), in males (OR 6.99, 95% CI 1.68-29.03, p = 0.007), in patients who presented with a qSOFA score ≥2 (OR 7.24, 95% CI 1.64-32.03, p = 0.009), with bilateral infiltrate (OR 18.92, 3.94-98.23, p<0.001) or with a CRP of 40 mg/l or greater (OR 5.44, 1.18-25.25; p = 0.030) on admission. Patients with more than seven days of symptoms on admission had decreased odds of mechanical ventilation (0.087, 95% CI 0.02-0.38, p = 0.001). CONCLUSIONS: This study gives some insight in the epidemiology and clinical course of patients admitted in a European tertiary hospital with SARS-CoV-2 infection. Age, male sex, high qSOFA score, CRP of 40 mg/l or greater and a bilateral radiological infiltrate could help clinicians identify patients at high risk for mechanical ventilation.


Subject(s)
Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Respiration, Artificial/statistics & numerical data , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Electronic Health Records , Female , Hospitalization , Hospitals, University , Humans , Logistic Models , Male , Middle Aged , Multivariate Analysis , Pandemics , Retrospective Studies , Risk Factors , SARS-CoV-2 , Switzerland , Tertiary Care Centers , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL