Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Hematol Oncol ; 2022 Jul 19.
Article in English | MEDLINE | ID: covidwho-1935680

ABSTRACT

The impact of secondary infections (SI) on COVID-19 outcome in patients with hematological malignancies (HM) is scarcely documented. To evaluate incidence, clinical characteristics, and outcome of SI, we analyzed the microbiologically documented SI in a large multicenter cohort of adult HM patients with COVID-19. Among 1741 HM patients with COVID-19, 134 (7.7%) had 185 SI, with a 1-month cumulative incidence of 5%. Median time between COVID-19 diagnosis and SI was 16 days (IQR: 5-36). Acute myeloid leukemia (AML) and lymphoma/plasma cell neoplasms (PCN) were more frequent diagnoses in SI patients compared to patients without SI (AML: 14.9% vs 7.1%; lymphoma /PCN 71.7% vs 65.3%). Patients with SI were older (median age 70 vs 66 yrs, p=0.002), with more comorbidities (median Charlson Comorbidity Index 5 vs 4, p<0.001), higher frequency of critical COVID-19 (19.5% vs 11.5%, p=0.046), and more frequently not in complete remission (75% vs 64.7% p=0.024). Blood and bronchoalveolar lavage were the main sites of isolation for SI. Etiology of infections was bacterial in 80% (n=148) of cases, mycotic in 9.7% (n=18) and viral in 10.3% (n=19); polymicrobial infections were observed in 24 patients (18%). Escherichia coli represented most of Gram-negative isolates (18.9%), while coagulase-negative Staphylococci were the most frequent among Gram-positive (14.2%). The 30-days mortality of patients with SI was higher when compared to patients without SI (69% vs 15%, p<0.001). The occurrence of SI worsened COVID-19 outcome in HM patients. Timely diagnosis and adequate management should be considered to improve their prognosis. This article is protected by copyright. All rights reserved.

3.
Haematologica ; 2022 May 12.
Article in English | MEDLINE | ID: covidwho-1841291

ABSTRACT

Patients with acute myeloid leukemia (AML) are at high risk of mortality from coronavirus disease 2019 (COVID-19). The optimal management of AML patients with COVID-19 has not been established. Our multicenter study included 388 adult AML patients with COVID-19 diagnosis between February 2020 and October 2021. The vast majority were receiving or had received AML treatment in the prior 3 months. COVID-19 was severe in 41.2% and critical in 21.1% of cases. The chemotherapeutic schedule was modified in 174 patients (44.8%), delayed in 68 and permanently discontinued in 106. After a median follow-up of 325 days, 180 patients (46.4%) had died; death was attributed to COVID-19 (43.3%), AML (26.1%) or to a combination of both (26.7%), whereas in 3.9% of cases the reason was unknown. Active disease, older age, and treatment discontinuation were associated with death, whereas AML treatment delay was protective. Seventy-nine patients had a simultaneous AML and COVID-19 diagnosis, with an improved survival when AML treatment could be delayed (80%; p.

4.
Leukemia ; 36(6): 1467-1480, 2022 06.
Article in English | MEDLINE | ID: covidwho-1830027

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a novel virus that spread worldwide from 2019 causing the Coronavirus disease 19 (COVID-19) pandemic. SARS-CoV-2 infection is characterised by an initial viral phase followed in some patients by a severe inflammatory phase. Importantly, immunocompromised patients may have a prolonged viral phase, shedding infectious viral particles for months, and absent or dysfunctional inflammatory phase. Among haematological patients, COVID-19 has been associated with high mortality rate in acute leukaemia, high risk-myelodysplastic syndromes, and after haematopoietic cell transplant and chimeric-antigen-receptor-T therapies. The clinical symptoms and signs were similar to that reported for the overall population, but the severity and outcome were worse. The deferral of immunodepleting cellular therapy treatments is recommended for SARS-CoV-2 positive patient, while in the other at-risk cases, the haematological treatment decisions must be weighed between individual risks and benefits. The gold standard for the diagnosis is the detection of viral RNA by nucleic acid testing on nasopharyngeal-swabbed sample, which provides high sensitivity and specificity; while rapid antigen tests have a lower sensitivity, especially in asymptomatic patients. The prevention of SARS-CoV-2 infection is based on strict infection control measures recommended for aerosol-droplet-and-contact transmission. Vaccinations against SARS-CoV-2 has shown high efficacy in reducing community transmission, hospitalisation and deaths due to severe COVID-19 disease in the general population, but immunosuppressed/haematology patients may have lower sero-responsiveness to vaccinations. Moreover, the recent emergence of new variants may require vaccine modifications and strategies to improve efficacy in these vulnerable patients. Beyond supportive care, the specific treatment is directed at viral replication control (antivirals, anti-spike monoclonal antibodies) and, in patients who need it, to the control of inflammation (dexamethasone, anti-Il-6 agents, and others). However, the benefit of all these various prophylactic and therapeutic treatments in haematology patients deserves further studies.


Subject(s)
COVID-19 , Hematologic Neoplasms , Hematopoietic Stem Cell Transplantation , Leukemia , Hematologic Neoplasms/complications , Hematologic Neoplasms/therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , SARS-CoV-2
6.
Marchesi, Francesco, Salmanton-Garcia, Jon, Emarah, Ziad, Piukovics, Klára, Nucci, Marcio, Lopez-Garcia, Alberto, Racil, Zdenek, Farina, Francesca, Popova, Marina, Zompi, Sofia, Audisio, Ernesta, Ledoux, Marie-Pierre, Verga, Luisa, Weinbergerova, Barbora, Szotkowski, Tomas, Silva, Maria, Fracchiolla, Nicola Stefano, De Jonge, Nick, Collins, Graham, Marchetti, Monia, Magliano, Gabriele, GarcÍA-Vidal, Carolina, Biernat, Monika, Doesum, Jaap van, Machado, Marina, Demirkan, Fatih, Khabori, Murtadha Al, Zak, Pavel, Visek, Benjamin, Stoma, Igor, MÉNdez, Gustavo-Adolfo, Maertens, Johan, Khanna, Nina, Espigado, Ildefonso, Dragonetti, Giulia, Fianchi, Luana, Principe, Maria Ilaria Del, Cabirta, Alba, Ormazabal-VÉLez, Irati, Jaksic, Ozren, Buquicchio, Caterina, Bonuomo, Valentina, Batinić, Josip, Omrani, Ali, Lamure, Sylvain, Finizio, Olimpia, FernÁNdez, Noemí, Falces-Romero, Iker, Blennow, Ola, Bergantim, Rui, Ali, Natasha, Win, Sein, Praet, Jens V. A. N.; Tisi, Maria Chiara, Shirinova, Ayten, SchÖNlein, Martin, Prattes, Juergen, Piedimonte, Monica, Petzer, Verena, NavrÁTil, Milan, Kulasekararaj, Austin, Jindra, Pavel, Jiří, Glenthøj, Andreas, Fazzi, Rita, de Ramón, Cristina, Cattaneo, Chiara, Calbacho, Maria, Bahr, Nathan, El-Ashwl, Shaimaa Saber, Córdoba, Raúl, Hanakova, Michaela, Zambrotta, Giovanni, Sciumè, Mariarita, Booth, Stephen, Nunes-Rodrigues, Raquel, Sacchi, Maria Vittoria, GarcÍA-PoutÓN, Nicole, MartÍN-GonzÁLez, Juan-Alberto, Khostelidi, Sofya, GrÄFe, Stefanie, Rahimli, Laman, busca, alessandro, Corradini, Paolo, Hoenigl, Martin, Klimko, Nikolai, Koehler, Philipp, Pagliuca, Antonio, Passamonti, Francesco, Cornely, Oliver, pagano, Livio.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-328805

ABSTRACT

Patients with acute myeloid leukemia (AML) are at high risk of mortality from coronavirus disease 2019 (COVID-19). The optimal management of AML patients with COVID-19 has not been established. Our multicenter study included 388 adult AML patients with COVID-19 diagnosis between February 2020 and October 2021. The vast majority were receiving or had received AML treatment in the prior 3 months. COVID-19 was severe in 41.2% and critical in 21.1% of cases. The chemotherapeutic schedule was modified in 174 patients (44.8%), delayed in 68 and permanently discontinued in 106. After a median follow-up of 325 days, 180 patients (46.4%) had died. Death was attributed to COVID-19 (43.3%), AML (26.1%) or to a combination of both (26.7%). Active disease, older age, and treatment discontinuation were associated with death, whereas AML treatment delay was protective. Seventy-nine patients had a simultaneous AML and COVID-19 diagnosis, with an improved survival when AML treatment could be delayed. Patients with COVID-19 diagnosis between January and August 2020 had a significantly lower survival. COVID-19 in AML patients was associated with a high mortality rate and modifications of therapeutic algorithms. The best approach to improve survival was to delay AML treatment.

7.
PLoS Pathog ; 17(12): e1010174, 2021 12.
Article in English | MEDLINE | ID: covidwho-1624813

ABSTRACT

The mechanisms and consequences of genome evolution on viral fitness following host shifts are poorly understood. In addition, viral fitness -the ability of an organism to reproduce and survive- is multifactorial and thus difficult to quantify. Influenza A viruses (IAVs) circulate broadly among wild birds and have jumped into and become endemic in multiple mammalian hosts, including humans, pigs, dogs, seals, and horses. H3N8 equine influenza virus (EIV) is an endemic virus of horses that originated in birds and has been circulating uninterruptedly in equine populations since the early 1960s. Here, we used EIV to quantify changes in infection phenotype associated to viral fitness due to genome-wide changes acquired during long-term adaptation. We performed experimental infections of two mammalian cell lines and equine tracheal explants using the earliest H3N8 EIV isolated (A/equine/Uruguay/63 [EIV/63]), and A/equine/Ohio/2003 (EIV/2003), a monophyletic descendant of EIV/63 isolated 40 years after the emergence of H3N8 EIV. We show that EIV/2003 exhibits increased resistance to interferon, enhanced viral replication, and a more efficient cell-to-cell spread in cells and tissues. Transcriptomics analyses revealed virus-specific responses to each virus, mainly affecting host immunity and inflammation. Image analyses of infected equine respiratory explants showed that despite replicating at higher levels and spreading over larger areas of the respiratory epithelium, EIV/2003 induced milder lesions compared to EIV/63, suggesting that adaptation led to reduced tissue pathogenicity. Our results reveal previously unknown links between virus genotype and the host response to infection, providing new insights on the relationship between virus evolution and fitness.


Subject(s)
Adaptation, Physiological/physiology , Host-Pathogen Interactions/physiology , Influenza A Virus, H3N8 Subtype/physiology , Influenza A Virus, H3N8 Subtype/pathogenicity , Orthomyxoviridae Infections/virology , Animals , Genetic Fitness/physiology , Horses
8.
Transpl Infect Dis ; 24(2): e13773, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1666343

ABSTRACT

The objective of the study was to assess the current clinical practice and the attitude toward deferral of HCT/chemotherapy in patients with hematological diseases in cases of asymptomatic patients with a positive assay for SARS-CoV-2. In August 2021, we performed a survey among EBMT centers regarding their attitude toward deferral of HCT/chemotherapy in patients with a positive PCR result. Centers were willing to defer the planned cellular therapy for patients with asymptomatic SARS-CoV-2 infection without previous COVID-19 disease, and patients who became asymptomatic after a previous COVID19 disease but persistently shed the virus, respectively, in case of high-risk allo-HCT (90.2%/76.9%), low-risk allo-HCT for malignant diseases (88.2%/83.7%), allo-HCT for nonmalignant diseases (91.0%/91.0%), auto-HCT (88.0%/79.8%), and CAR-T therapy (83.1%/81.4%). The respective rates toward deferral of noncellular therapy patients was lower for both groups of patients, and varied with the primary diagnosis and anti-malignant treatment. There is a relatively high rate of willingness to defer treatment in asymptomatic patients being positive for SARS-CoV-2, planned for cellular therapy, regardless of previous history of vaccination or COVID-19. The same approach is presented for most of patients before noncellular therapy. Nevertheless, each patient should be considered individually weighting risks and benefits.


Subject(s)
COVID-19 , Communicable Diseases , Asymptomatic Infections , Humans , Immunotherapy, Adoptive , SARS-CoV-2
9.
Blood Adv ; 6(1): 327-338, 2022 01 11.
Article in English | MEDLINE | ID: covidwho-1622201

ABSTRACT

Lymphoma represents a heterogeneous hematological malignancy (HM), which is characterized by severe immunosuppression. Patients diagnosed of coronavirus disease 2019 (COVID-19) during the course of HM have been described to have poor outcome, with only few reports specifically addressing lymphoma patients. Here, we investigated the clinical behavior and clinical parameters of a large multicenter cohort of adult patients with different lymphoma subtypes, with the aim of identifying predictors of death. The study included 856 patients, of whom 619 were enrolled prospectively in a 1-year frame and were followed-up for a median of 66 days (range 1-395). Patients were managed as outpatient (not-admitted cohort, n = 388) or required hospitalization (n = 468), and median age was 63 years (range 19-94). Overall, the 30- and 100-days mortality was 13% (95% confidence interval (CI), 11% to 15%) and 23% (95% CI, 20% to 27%), respectively. Antilymphoma treatment, including anti-CD20 containing regimens, did not impact survival. Patients with Hodgkin's lymphoma had the more favorable survival, but this was partly related to significantly younger age. The time interval between lymphoma diagnosis and COVID-19 was inversely related to mortality. Multivariable analysis recognized 4 easy-to-use factors (age, gender, lymphocyte, and platelet count) that were associated with risk of death, both in the admitted and in the not-admitted cohort (HR 3.79 and 8.85 for the intermediate- and high-risk group, respectively). Overall, our study shows that patients should not be deprived of the best available treatment of their underlying disease and indicates which patients are at higher risk of death. This study was registered with ClinicalTrials.gov, NCT04352556.


Subject(s)
COVID-19 , Lymphoma , Adult , Aged , Aged, 80 and over , Cohort Studies , Humans , Lymphoma/diagnosis , Lymphoma/therapy , Middle Aged , Prognosis , SARS-CoV-2 , Young Adult
12.
J Hematol Oncol ; 14(1): 168, 2021 10 14.
Article in English | MEDLINE | ID: covidwho-1468074

ABSTRACT

BACKGROUND: Patients with hematological malignancies (HM) are at high risk of mortality from SARS-CoV-2 disease 2019 (COVID-19). A better understanding of risk factors for adverse outcomes may improve clinical management in these patients. We therefore studied baseline characteristics of HM patients developing COVID-19 and analyzed predictors of mortality. METHODS: The survey was supported by the Scientific Working Group Infection in Hematology of the European Hematology Association (EHA). Eligible for the analysis were adult patients with HM and laboratory-confirmed COVID-19 observed between March and December 2020. RESULTS: The study sample includes 3801 cases, represented by lymphoproliferative (mainly non-Hodgkin lymphoma n = 1084, myeloma n = 684 and chronic lymphoid leukemia n = 474) and myeloproliferative malignancies (mainly acute myeloid leukemia n = 497 and myelodysplastic syndromes n = 279). Severe/critical COVID-19 was observed in 63.8% of patients (n = 2425). Overall, 2778 (73.1%) of the patients were hospitalized, 689 (18.1%) of whom were admitted to intensive care units (ICUs). Overall, 1185 patients (31.2%) died. The primary cause of death was COVID-19 in 688 patients (58.1%), HM in 173 patients (14.6%), and a combination of both COVID-19 and progressing HM in 155 patients (13.1%). Highest mortality was observed in acute myeloid leukemia (199/497, 40%) and myelodysplastic syndromes (118/279, 42.3%). The mortality rate significantly decreased between the first COVID-19 wave (March-May 2020) and the second wave (October-December 2020) (581/1427, 40.7% vs. 439/1773, 24.8%, p value < 0.0001). In the multivariable analysis, age, active malignancy, chronic cardiac disease, liver disease, renal impairment, smoking history, and ICU stay correlated with mortality. Acute myeloid leukemia was a higher mortality risk than lymphoproliferative diseases. CONCLUSIONS: This survey confirms that COVID-19 patients with HM are at high risk of lethal complications. However, improved COVID-19 prevention has reduced mortality despite an increase in the number of reported cases.


Subject(s)
COVID-19/complications , Hematologic Neoplasms/complications , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/therapy , Europe/epidemiology , Female , Hematologic Neoplasms/epidemiology , Hematologic Neoplasms/therapy , Hospitalization , Humans , Intensive Care Units , Male , Middle Aged , Registries , Risk Factors , SARS-CoV-2/isolation & purification , Young Adult
14.
J Hematol Oncol ; 14(1): 119, 2021 07 29.
Article in English | MEDLINE | ID: covidwho-1331948

ABSTRACT

In a population of 42 Philadelphia negative myeloproliferative neoplasm patients, all on systemic active treatment, the likelihood of responding to anti-SARS-CoV-2 BNT162b2 vaccine at 2 weeks after the second dose was significantly lower in the ten patients with myelofibrosis compared to the 32 with essential thrombocythemia (n = 17) and polycythemia vera (n = 15) grouped together, both in terms of neutralizing anti-SARS-CoV-2 IgG titers and seroprotection rates (32.47 AU/mL vs 217.97 AU/mL, p = 0.003 and 60% vs 93.8%, p = 0.021, respectively). Ruxolitinib, which was the ongoing treatment in five patients with myelofibrosis and three with polycythemia vera, may be implicated in reducing vaccine immunogenicity (p = 0.076), though large prospective study is needed to address this issue.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/administration & dosage , COVID-19/drug therapy , Polycythemia Vera/immunology , Primary Myelofibrosis/immunology , SARS-CoV-2/drug effects , Thrombocythemia, Essential/immunology , Aged , Antibodies, Viral/immunology , COVID-19/complications , COVID-19/virology , Female , Humans , Male , Polycythemia Vera/pathology , Polycythemia Vera/virology , Primary Myelofibrosis/pathology , Primary Myelofibrosis/virology , Prognosis , Thrombocythemia, Essential/pathology , Thrombocythemia, Essential/virology
15.
Br J Haematol ; 195(3): 371-377, 2021 11.
Article in English | MEDLINE | ID: covidwho-1314037

ABSTRACT

COVID-19 is associated with high mortality in patients with haematological malignancies (HM) and rate of seroconversion is unknown. The ITA-HEMA-COV project (NCT04352556) investigated patterns of seroconversion for SARS-CoV-2 IgG in patients with HMs. A total of 237 patients, SARS-CoV-2 PCR-positive with at least one SARS-CoV-2 IgG test performed during their care, entered the analysis. Among these, 62 (26·2%) had myeloid, 121 (51·1%) lymphoid and 54 (22·8%) plasma cell neoplasms. Overall, 69% of patients (164 of 237) had detectable IgG SARS-CoV-2 serum antibodies. Serologically negative patients (31%, 73 of 237) were evenly distributed across patients with myeloid, lymphoid and plasma cell neoplasms. In the multivariable logistic regression, chemoimmunotherapy [odds ratio (OR), 3·42; 95% confidence interval (CI), 1·04-11·21; P = 0·04] was associated with a lower rate of seroconversion. This effect did not decline after 180 days from treatment withdrawal (OR, 0·35; 95% CI: 0·11-1·13; P = 0·08). This study demonstrates a low rate of seroconversion in HM patients and indicates that treatment-mediated immune dysfunction is the main driver. As a consequence, we expect a low rate of seroconversion after vaccination and thus we suggest testing the efficacy of seroconversion in HM patients.


Subject(s)
Antibody Formation , COVID-19/complications , Hematologic Neoplasms/complications , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Viral/immunology , COVID-19/immunology , Female , Hematologic Neoplasms/immunology , Humans , Immunoglobulin G/immunology , Male , Middle Aged , Seroconversion , Young Adult
17.
J Hematol Oncol ; 14(1): 81, 2021 05 17.
Article in English | MEDLINE | ID: covidwho-1232431

ABSTRACT

BACKGROUND: Safety and immunogenicity of BNT162b2 mRNA vaccine are unknown in hematological patients; both were evaluated prospectively in 42 patients with multiple myeloma (MM) and 50 with myeloproliferative malignancies (MPM) (20 chronic myeloid leukemias and 30 myeloproliferative neoplasms), all of them on active anti-cancer treatment, in comparison with 36 elderly controls not suffering from cancer. Subjects serologically and/or molecularly (by nasal/throat swab) positives at basal for SARS-CoV-2 were excluded. Primary endpoint was to compare titers of neutralizing anti-SARS-CoV-2 IgG and seroprotection rates among the cohorts at 3 and 5 weeks from first dose. METHODS: Titration was done using LIAISON® SARS-CoV-2 S1/S2 IgG test, a quantitative chemiluminescent immunoassay approved by FDA on the basis of robust evidences of concordance (94.4%) between the test at cutoff of 15 AU/mL and the Plaque Reduction Neutralization Test 90% at 1:40 ratio. Cutoff of 15 AU/mL was assumed to discriminate responders to vaccination with a protective titer. Cohorts were compared using Fisher' exact test and the Mann-Whitney test as appropriated. Geometric mean concentrations (GMCs), geometric mean ratios and response rates after 1st and 2nd dose were compared in each cohort by Wilcoxon and McNemar tests, respectively. RESULTS: At 5 weeks, GMC of IgG in elderly controls was 353.3 AU/mL versus 106.7 in MM (p = 0.003) and 172.9 in MPM patients (p = 0.049). Seroprotection rate at cutoff of 15 AU/mL was 100% in controls compared to 78.6% in MM (p = 0.003) and 88% in MPM patients (p = 0.038). In terms of logarithm of IgG titer, in a generalized multivariate linear model, no gender effect was observed (p = 0.913), while there was a significant trend toward lower titers by increasing age (p < 0.001) and in disease cohorts with respect to controls (MM: p < 0.001 and MPM: p < 0.001). An ongoing treatment without daratumumab was associated with higher likelihood of response in MM patients (p = 0.003). No swabs resulted positive on each time point. No safety concerns were observed. CONCLUSIONS: BNT162b2 has demonstrated to be immunogenic at different extent among the cohorts. Response was 88% and robust in MPM patients. MM patients responded significantly less, particularly those on anti-CD38-based treatment. These latter patients should be advised to maintain masks and social distancing regardless of vaccination status, and their cohabiting family members need to be vaccinated in order to reduce the risk of contagion from the family. Additional boosters and titer monitoring could be considered. Trial registration Study was formally approved by the IRCCS Central Ethical Committee of Regione Lazio in January 2021 (Prot. N-1463/21).


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Multiple Myeloma/complications , Myeloproliferative Disorders/complications , Adult , Aged , Aged, 80 and over , COVID-19/immunology , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Female , Humans , Immunogenicity, Vaccine , Immunoglobulin G/immunology , Male , Middle Aged , Multiple Myeloma/immunology , Myeloproliferative Disorders/immunology , Preliminary Data , Prospective Studies , SARS-CoV-2/immunology
SELECTION OF CITATIONS
SEARCH DETAIL