Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Bradbury, Charlotte A. M. D. PhD, Lawler, Patrick R. M. D. M. P. H.; Stanworth, Simon J. M. D.; McVerry, Bryan J. M. D.; McQuilten, Zoe PhD, Higgins, Alisa M. PhD, Mouncey, Paul R. MSc, Al-Beidh, Farah PhD, Rowan, Kathryn M. PhD, Berry, Lindsay R. PhD, Lorenzi, Elizabeth PhD, Zarychanski, Ryan M. D. MSc, Arabi, Yaseen M. M. D.; Annane, Djillali M. D. PhD, Beane, Abi PhD, van Bentum-Puijk, Wilma MSc, Bhimani, Zahra M. P. H.; Bihari, Shailesh PhD, M Bonten, Marc J. M. D. PhD, Brunkhorst, Frank M. M. D. PhD, Buzgau, Adrian MSc, Buxton, Meredith PhD, Carrier, Marc M. D. MSc, Cheng, Allen C. Mbbs PhD, Cove, Matthew Mbbs, Detry, Michelle A. PhD, Estcourt, Lise J. MBBCh PhD, Fitzgerald, Mark PhD, Girard, Timothy D. M. D. Msci, Goligher, Ewan C. M. D. PhD, Goossens, Herman PhD, Haniffa, Rashan PhD, Hills, Thomas Mbbs PhD, Huang, David T. M. D. M. P. H.; Horvat, Christopher M. M. D.; Hunt, Beverley J. M. D. PhD, Ichihara, Nao M. D. M. P. H. PhD, Lamontagne, Francois M. D.; Leavis, Helen L. M. D. PhD, Linstrum, Kelsey M. M. S.; Litton, Edward M. D. PhD, Marshall, John C. M. D.; McAuley, Daniel F. M. D.; McGlothlin, Anna PhD, McGuinness, Shay P. M. D.; Middeldorp, Saskia M. D. PhD, Montgomery, Stephanie K. MSc, Morpeth, Susan C. M. D. PhD, Murthy, Srinivas M. D.; Neal, Matthew D. M. D.; Nichol, Alistair D. M. D. PhD, Parke, Rachael L. PhD, Parker, Jane C. B. N.; Reyes, Luis F. M. D. PhD, Saito, Hiroki M. D. M. P. H.; Santos, Marlene S. M. D. Mshs, Saunders, Christina T. PhD, Serpa-Neto, Ary PhD MSc M. D.; Seymour, Christopher W. M. D. MSc, Shankar-Hari, Manu M. D. PhD, Singh, Vanessa, Tolppa, Timo Mbbs, Turgeon, Alexis F. M. D. MSc, Turner, Anne M. M. P. H.; van de Veerdonk, Frank L. M. D. PhD, Green, Cameron MSc, Lewis, Roger J. M. D. PhD, Angus, Derek C. M. D. M. P. H.; McArthur, Colin J. M. D.; Berry, Scott PhD, G Derde, Lennie P. M. D. PhD, Webb, Steve A. M. D. PhD, Gordon, Anthony C. Mbbs M. D..
JAMA ; 327(13):1247, 2022.
Article in English | ProQuest Central | ID: covidwho-1801957

ABSTRACT

Importance The efficacy of antiplatelet therapy in critically ill patients with COVID-19 is uncertain. Objective To determine whether antiplatelet therapy improves outcomes for critically ill adults with COVID-19. Design, Setting, and Participants In an ongoing adaptive platform trial (REMAP-CAP) testing multiple interventions within multiple therapeutic domains, 1557 critically ill adult patients with COVID-19 were enrolled between October 30, 2020, and June 23, 2021, from 105 sites in 8 countries and followed up for 90 days (final follow-up date: July 26, 2021). Interventions Patients were randomized to receive either open-label aspirin (n = 565), a P2Y12 inhibitor (n = 455), or no antiplatelet therapy (control;n = 529). Interventions were continued in the hospital for a maximum of 14 days and were in addition to anticoagulation thromboprophylaxis. Main Outcomes and Measures The primary end point was organ support–free days (days alive and free of intensive care unit–based respiratory or cardiovascular organ support) within 21 days, ranging from −1 for any death in hospital (censored at 90 days) to 22 for survivors with no organ support. There were 13 secondary outcomes, including survival to discharge and major bleeding to 14 days. The primary analysis was a bayesian cumulative logistic model. An odds ratio (OR) greater than 1 represented improved survival, more organ support–free days, or both. Efficacy was defined as greater than 99% posterior probability of an OR greater than 1. Futility was defined as greater than 95% posterior probability of an OR less than 1.2 vs control. Intervention equivalence was defined as greater than 90% probability that the OR (compared with each other) was between 1/1.2 and 1.2 for 2 noncontrol interventions. Results The aspirin and P2Y12 inhibitor groups met the predefined criteria for equivalence at an adaptive analysis and were statistically pooled for further analysis. Enrollment was discontinued after the prespecified criterion for futility was met for the pooled antiplatelet group compared with control. Among the 1557 critically ill patients randomized, 8 patients withdrew consent and 1549 completed the trial (median age, 57 years;521 [33.6%] female). The median for organ support–free days was 7 (IQR, −1 to 16) in both the antiplatelet and control groups (median-adjusted OR, 1.02 [95% credible interval {CrI}, 0.86-1.23];95.7% posterior probability of futility). The proportions of patients surviving to hospital discharge were 71.5% (723/1011) and 67.9% (354/521) in the antiplatelet and control groups, respectively (median-adjusted OR, 1.27 [95% CrI, 0.99-1.62];adjusted absolute difference, 5% [95% CrI, −0.2% to 9.5%];97% posterior probability of efficacy). Among survivors, the median for organ support–free days was 14 in both groups. Major bleeding occurred in 2.1% and 0.4% of patients in the antiplatelet and control groups (adjusted OR, 2.97 [95% CrI, 1.23-8.28];adjusted absolute risk increase, 0.8% [95% CrI, 0.1%-2.7%];99.4% probability of harm). Conclusions and Relevance Among critically ill patients with COVID-19, treatment with an antiplatelet agent, compared with no antiplatelet agent, had a low likelihood of providing improvement in the number of organ support–free days within 21 days.

3.
JAMA ; 327(13): 1247-1259, 2022 Apr 05.
Article in English | MEDLINE | ID: covidwho-1750260

ABSTRACT

Importance: The efficacy of antiplatelet therapy in critically ill patients with COVID-19 is uncertain. Objective: To determine whether antiplatelet therapy improves outcomes for critically ill adults with COVID-19. Design, Setting, and Participants: In an ongoing adaptive platform trial (REMAP-CAP) testing multiple interventions within multiple therapeutic domains, 1557 critically ill adult patients with COVID-19 were enrolled between October 30, 2020, and June 23, 2021, from 105 sites in 8 countries and followed up for 90 days (final follow-up date: July 26, 2021). Interventions: Patients were randomized to receive either open-label aspirin (n = 565), a P2Y12 inhibitor (n = 455), or no antiplatelet therapy (control; n = 529). Interventions were continued in the hospital for a maximum of 14 days and were in addition to anticoagulation thromboprophylaxis. Main Outcomes and Measures: The primary end point was organ support-free days (days alive and free of intensive care unit-based respiratory or cardiovascular organ support) within 21 days, ranging from -1 for any death in hospital (censored at 90 days) to 22 for survivors with no organ support. There were 13 secondary outcomes, including survival to discharge and major bleeding to 14 days. The primary analysis was a bayesian cumulative logistic model. An odds ratio (OR) greater than 1 represented improved survival, more organ support-free days, or both. Efficacy was defined as greater than 99% posterior probability of an OR greater than 1. Futility was defined as greater than 95% posterior probability of an OR less than 1.2 vs control. Intervention equivalence was defined as greater than 90% probability that the OR (compared with each other) was between 1/1.2 and 1.2 for 2 noncontrol interventions. Results: The aspirin and P2Y12 inhibitor groups met the predefined criteria for equivalence at an adaptive analysis and were statistically pooled for further analysis. Enrollment was discontinued after the prespecified criterion for futility was met for the pooled antiplatelet group compared with control. Among the 1557 critically ill patients randomized, 8 patients withdrew consent and 1549 completed the trial (median age, 57 years; 521 [33.6%] female). The median for organ support-free days was 7 (IQR, -1 to 16) in both the antiplatelet and control groups (median-adjusted OR, 1.02 [95% credible interval {CrI}, 0.86-1.23]; 95.7% posterior probability of futility). The proportions of patients surviving to hospital discharge were 71.5% (723/1011) and 67.9% (354/521) in the antiplatelet and control groups, respectively (median-adjusted OR, 1.27 [95% CrI, 0.99-1.62]; adjusted absolute difference, 5% [95% CrI, -0.2% to 9.5%]; 97% posterior probability of efficacy). Among survivors, the median for organ support-free days was 14 in both groups. Major bleeding occurred in 2.1% and 0.4% of patients in the antiplatelet and control groups (adjusted OR, 2.97 [95% CrI, 1.23-8.28]; adjusted absolute risk increase, 0.8% [95% CrI, 0.1%-2.7%]; 99.4% probability of harm). Conclusions and Relevance: Among critically ill patients with COVID-19, treatment with an antiplatelet agent, compared with no antiplatelet agent, had a low likelihood of providing improvement in the number of organ support-free days within 21 days. Trial Registration: ClinicalTrials.gov Identifier: NCT02735707.


Subject(s)
COVID-19 , Venous Thromboembolism , Adult , Anticoagulants/therapeutic use , Aspirin/adverse effects , Bayes Theorem , Critical Illness/therapy , Female , Hemorrhage/chemically induced , Humans , Middle Aged , Platelet Aggregation Inhibitors/adverse effects , Respiration, Artificial , Venous Thromboembolism/drug therapy
4.
J Ment Health ; : 1-10, 2022 Jan 04.
Article in English | MEDLINE | ID: covidwho-1604963

ABSTRACT

BACKGROUND: The coronavirus (COVID-19) pandemic has seen a global surge in anxiety, depression, post-traumatic stress disorder (PTSD), and stress. AIMS: This study aimed to describe the perspectives of patients with COVID-19, their family, health professionals, and the general public on the impact of COVID-19 on mental health. METHODS: A secondary thematic analysis was conducted using data from the COVID-19 COS project. We extracted data on the perceived causes and impact of COVID-19 on mental health from an international survey and seven online consensus workshops. RESULTS: We identified four themes (with subthemes in parenthesis): anxiety amidst uncertainty (always on high alert, ebb and flow of recovery); anguish of a threatened future (intense frustration of a changed normality, facing loss of livelihood, trauma of ventilation, a troubling prognosis, confronting death); bearing responsibility for transmission (fear of spreading COVID-19 in public; overwhelming guilt of infecting a loved one); and suffering in isolation (severe solitude of quarantine, sick and alone, separation exacerbating grief). CONCLUSION: We found that the unpredictability of COVID-19, the fear of long-term health consequences, burden of guilt, and suffering in isolation profoundly impacted mental health. Clinical and public health interventions are needed to manage the psychological consequences arising from this pandemic.

5.
Lancet Infect Dis ; 22(4): e102-e107, 2022 04.
Article in English | MEDLINE | ID: covidwho-1598293

ABSTRACT

People with COVID-19 might have sustained postinfection sequelae. Known by a variety of names, including long COVID or long-haul COVID, and listed in the ICD-10 classification as post-COVID-19 condition since September, 2020, this occurrence is variable in its expression and its impact. The absence of a globally standardised and agreed-upon definition hampers progress in characterisation of its epidemiology and the development of candidate treatments. In a WHO-led Delphi process, we engaged with an international panel of 265 patients, clinicians, researchers, and WHO staff to develop a consensus definition for this condition. 14 domains and 45 items were evaluated in two rounds of the Delphi process to create a final consensus definition for adults: post-COVID-19 condition occurs in individuals with a history of probable or confirmed SARS-CoV-2 infection, usually 3 months from the onset, with symptoms that last for at least 2 months and cannot be explained by an alternative diagnosis. Common symptoms include, but are not limited to, fatigue, shortness of breath, and cognitive dysfunction, and generally have an impact on everyday functioning. Symptoms might be new onset following initial recovery from an acute COVID-19 episode or persist from the initial illness. Symptoms might also fluctuate or relapse over time. A separate definition might be applicable for children. Although the consensus definition is likely to change as knowledge increases, this common framework provides a foundation for ongoing and future studies of epidemiology, risk factors, clinical characteristics, and therapy.


Subject(s)
COVID-19 , Adult , COVID-19/complications , Child , Consensus , Delphi Technique , Humans , SARS-CoV-2
6.
Lancet Respir Med ; 10(1): 107-120, 2022 01.
Article in English | MEDLINE | ID: covidwho-1591647

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a heterogeneous clinical syndrome. Understanding of the complex pathways involved in lung injury pathogenesis, resolution, and repair has grown considerably in recent decades. Nevertheless, to date, only therapies targeting ventilation-induced lung injury have consistently proven beneficial, and despite these gains, ARDS morbidity and mortality remain high. Many candidate therapies with promise in preclinical studies have been ineffective in human trials, probably at least in part due to clinical and biological heterogeneity that modifies treatment responsiveness in human ARDS. A precision medicine approach to ARDS seeks to better account for this heterogeneity by matching therapies to subgroups of patients that are anticipated to be most likely to benefit, which initially might be identified in part by assessing for heterogeneity of treatment effect in clinical trials. In October 2019, the US National Heart, Lung, and Blood Institute convened a workshop of multidisciplinary experts to explore research opportunities and challenges for accelerating precision medicine in ARDS. Topics of discussion included the rationale and challenges for a precision medicine approach in ARDS, the roles of preclinical ARDS models in precision medicine, essential features of cohort studies to advance precision medicine, and novel approaches to clinical trials to support development and validation of a precision medicine strategy. In this Position Paper, we summarise workshop discussions, recommendations, and unresolved questions for advancing precision medicine in ARDS. Although the workshop took place before the COVID-19 pandemic began, the pandemic has highlighted the urgent need for precision therapies for ARDS as the global scientific community grapples with many of the key concepts, innovations, and challenges discussed at this workshop.


Subject(s)
Precision Medicine , Respiratory Distress Syndrome , COVID-19 , Humans , Respiratory Distress Syndrome/therapy
8.
BMJ Glob Health ; 6(9)2021 09.
Article in English | MEDLINE | ID: covidwho-1435044

ABSTRACT

BACKGROUND: Globally, critical illness results in millions of deaths every year. Although many of these deaths are potentially preventable, the basic, life-saving care of critically ill patients are often overlooked in health systems. Essential Emergency and Critical Care (EECC) has been devised as the care that should be provided to all critically ill patients in all hospitals in the world. EECC includes the effective care of low cost and low complexity for the identification and treatment of critically ill patients across all medical specialties. This study aimed to specify the content of EECC and additionally, given the surge of critical illness in the ongoing pandemic, the essential diagnosis-specific care for critically ill patients with COVID-19. METHODS: In a Delphi process, consensus (>90% agreement) was sought from a diverse panel of global clinical experts. The panel iteratively rated proposed treatments and actions based on previous guidelines and the WHO/ICRC's Basic Emergency Care. The output from the Delphi was adapted iteratively with specialist reviewers into a coherent and feasible package of clinical processes plus a list of hospital readiness requirements. RESULTS: The 269 experts in the Delphi panel had clinical experience in different acute medical specialties from 59 countries and from all resource settings. The agreed EECC package contains 40 clinical processes and 67 requirements, plus additions specific for COVID-19. CONCLUSION: The study has specified the content of care that should be provided to all critically ill patients. Implementing EECC could be an effective strategy for policy makers to reduce preventable deaths worldwide.


Subject(s)
COVID-19 , Emergency Medical Services , Consensus , Critical Care , Humans , SARS-CoV-2
9.
N Engl J Med ; 385(9): 777-789, 2021 Aug 26.
Article in English | MEDLINE | ID: covidwho-1343497

ABSTRACT

BACKGROUND: Thrombosis and inflammation may contribute to morbidity and mortality among patients with coronavirus disease 2019 (Covid-19). We hypothesized that therapeutic-dose anticoagulation would improve outcomes in critically ill patients with Covid-19. METHODS: In an open-label, adaptive, multiplatform, randomized clinical trial, critically ill patients with severe Covid-19 were randomly assigned to a pragmatically defined regimen of either therapeutic-dose anticoagulation with heparin or pharmacologic thromboprophylaxis in accordance with local usual care. The primary outcome was organ support-free days, evaluated on an ordinal scale that combined in-hospital death (assigned a value of -1) and the number of days free of cardiovascular or respiratory organ support up to day 21 among patients who survived to hospital discharge. RESULTS: The trial was stopped when the prespecified criterion for futility was met for therapeutic-dose anticoagulation. Data on the primary outcome were available for 1098 patients (534 assigned to therapeutic-dose anticoagulation and 564 assigned to usual-care thromboprophylaxis). The median value for organ support-free days was 1 (interquartile range, -1 to 16) among the patients assigned to therapeutic-dose anticoagulation and was 4 (interquartile range, -1 to 16) among the patients assigned to usual-care thromboprophylaxis (adjusted proportional odds ratio, 0.83; 95% credible interval, 0.67 to 1.03; posterior probability of futility [defined as an odds ratio <1.2], 99.9%). The percentage of patients who survived to hospital discharge was similar in the two groups (62.7% and 64.5%, respectively; adjusted odds ratio, 0.84; 95% credible interval, 0.64 to 1.11). Major bleeding occurred in 3.8% of the patients assigned to therapeutic-dose anticoagulation and in 2.3% of those assigned to usual-care pharmacologic thromboprophylaxis. CONCLUSIONS: In critically ill patients with Covid-19, an initial strategy of therapeutic-dose anticoagulation with heparin did not result in a greater probability of survival to hospital discharge or a greater number of days free of cardiovascular or respiratory organ support than did usual-care pharmacologic thromboprophylaxis. (REMAP-CAP, ACTIV-4a, and ATTACC ClinicalTrials.gov numbers, NCT02735707, NCT04505774, NCT04359277, and NCT04372589.).


Subject(s)
Anticoagulants/administration & dosage , COVID-19/drug therapy , Heparin/administration & dosage , Thrombosis/prevention & control , Aged , Anticoagulants/adverse effects , Anticoagulants/therapeutic use , COVID-19/mortality , Critical Illness , Female , Hemorrhage/chemically induced , Heparin/adverse effects , Heparin/therapeutic use , Hospital Mortality , Humans , Logistic Models , Male , Middle Aged , Odds Ratio , Respiration, Artificial , Treatment Failure
11.
Crit Care Explor ; 3(6): e0430, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1270758

ABSTRACT

To describe the epidemiology of superinfections (occurring > 48 hr after hospital admission) and their impact on the ICU and 28-day mortality in patients with coronavirus disease 2019 with acute respiratory distress syndrome, requiring mechanical ventilation. DESIGN: Retrospective analysis of prospectively collected observational data. SETTING: University-affiliated adult ICU. PATIENTS: Ninety-two coronavirus disease 2019 patients admitted to the ICU from February 21, 2020, to May 6, 2020. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: The prevalence of superinfection at ICU admission was 21.7%, and 53 patients (57.6%) had at least one superinfection during ICU stay, with a total of 75 (82%) ventilator-associated pneumonia and 57 (62%) systemic infections. The most common pathogens responsible for ventilator-associated pneumonia were Pseudomonas aeruginosa (n = 26, 34.7%) and Stenotrophomonas maltophilia (n = 14, 18.7%). Bloodstream infection occurred in 16 cases, including methicillin-resistant Staphylococcus epidermidis (n = 8, 14.0%), Enterococcus species (n = 6, 10.5%), and Streptococcus species (n = 2, 3.5%). Fungal infections occurred in 41 cases, including 36 probable (30 by Candida albicans, six by C. nonalbicans) and five proven invasive candidiasis (three C. albicans, two C. nonalbicans). Presence of bacterial infections (odds ratio, 10.53; 95% CI, 2.31-63.42; p = 0.005), age (odds ratio, 1.17; 95% CI, 1.07-1.31; p = 0.001), and the highest Sequential Organ Failure Assessment score (odds ratio, 1.27; 95% CI, 1.06-1.63; p = 0.032) were independently associated with ICU or 28-day mortality. CONCLUSIONS: Prevalence of superinfections in coronavirus disease 2019 patients requiring mechanical ventilation was high in this series, and bacterial superinfections were independently associated with ICU or 28-day mortality (whichever comes first).

13.
N Engl J Med ; 384(16): 1491-1502, 2021 04 22.
Article in English | MEDLINE | ID: covidwho-1101727

ABSTRACT

BACKGROUND: The efficacy of interleukin-6 receptor antagonists in critically ill patients with coronavirus disease 2019 (Covid-19) is unclear. METHODS: We evaluated tocilizumab and sarilumab in an ongoing international, multifactorial, adaptive platform trial. Adult patients with Covid-19, within 24 hours after starting organ support in the intensive care unit (ICU), were randomly assigned to receive tocilizumab (8 mg per kilogram of body weight), sarilumab (400 mg), or standard care (control). The primary outcome was respiratory and cardiovascular organ support-free days, on an ordinal scale combining in-hospital death (assigned a value of -1) and days free of organ support to day 21. The trial uses a Bayesian statistical model with predefined criteria for superiority, efficacy, equivalence, or futility. An odds ratio greater than 1 represented improved survival, more organ support-free days, or both. RESULTS: Both tocilizumab and sarilumab met the predefined criteria for efficacy. At that time, 353 patients had been assigned to tocilizumab, 48 to sarilumab, and 402 to control. The median number of organ support-free days was 10 (interquartile range, -1 to 16) in the tocilizumab group, 11 (interquartile range, 0 to 16) in the sarilumab group, and 0 (interquartile range, -1 to 15) in the control group. The median adjusted cumulative odds ratios were 1.64 (95% credible interval, 1.25 to 2.14) for tocilizumab and 1.76 (95% credible interval, 1.17 to 2.91) for sarilumab as compared with control, yielding posterior probabilities of superiority to control of more than 99.9% and of 99.5%, respectively. An analysis of 90-day survival showed improved survival in the pooled interleukin-6 receptor antagonist groups, yielding a hazard ratio for the comparison with the control group of 1.61 (95% credible interval, 1.25 to 2.08) and a posterior probability of superiority of more than 99.9%. All secondary analyses supported efficacy of these interleukin-6 receptor antagonists. CONCLUSIONS: In critically ill patients with Covid-19 receiving organ support in ICUs, treatment with the interleukin-6 receptor antagonists tocilizumab and sarilumab improved outcomes, including survival. (REMAP-CAP ClinicalTrials.gov number, NCT02735707.).


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/drug therapy , Receptors, Interleukin-6/antagonists & inhibitors , Adult , Aged , Antibodies, Monoclonal, Humanized/adverse effects , COVID-19/complications , COVID-19/mortality , COVID-19/therapy , Critical Illness , Female , Hospital Mortality , Humans , Intensive Care Units , Male , Middle Aged , Odds Ratio , Respiration, Artificial
14.
Wellcome Open Res ; 6: 14, 2021.
Article in English | MEDLINE | ID: covidwho-1090165

ABSTRACT

The Randomized Embedded Multifactorial Adaptive Platform (REMAP-CAP) adapted for COVID-19) trial is a global adaptive platform trial of hospitalised patients with COVID-19. We describe implementation in three countries under the umbrella of the Wellcome supported Low and Middle Income Country (LMIC) critical  care network: Collaboration for Research, Implementation and Training in Asia (CCA). The collaboration sought to overcome known barriers to multi centre-clinical trials in resource-limited settings. Methods described focused on six aspects of implementation: i, Strengthening an existing community of practice; ii, Remote study site recruitment, training and support; iii, Harmonising the REMAP CAP- COVID trial with existing care processes; iv, Embedding REMAP CAP- COVID case report form into the existing CCA registry platform, v, Context specific adaptation and data management; vi, Alignment with existing pandemic and critical care research in the CCA. Methods described here may enable other LMIC sites to participate as equal partners in international critical care trials of urgent public health importance, both during this pandemic and beyond.

15.
Respir Res ; 22(1): 20, 2021 Jan 18.
Article in English | MEDLINE | ID: covidwho-1067232

ABSTRACT

BACKGROUND: COVID-19 causes acute respiratory distress syndrome (ARDS) and depletes the lungs of surfactant, leading to prolonged mechanical ventilation and death. The feasibility and safety of surfactant delivery in COVID-19 ARDS patients have not been established. METHODS: We performed retrospective analyses of data from patients receiving off-label use of exogenous natural surfactant during the COVID-19 pandemic. Seven COVID-19 PCR positive ARDS patients received liquid Curosurf (720 mg) in 150 ml normal saline, divided into five 30 ml aliquots) and delivered via a bronchoscope into second-generation bronchi. Patients were matched with 14 comparable subjects receiving supportive care for ARDS during the same time period. Feasibility and safety were examined as well as the duration of mechanical ventilation and mortality. RESULTS: Patients showed no evidence of acute decompensation following surfactant installation into minor bronchi. Cox regression showed a reduction of 28-days mortality within the surfactant group, though not significant. The surfactant did not increase the duration of ventilation, and health care providers did not convert to COVID-19 positive. CONCLUSIONS: Surfactant delivery through bronchoscopy at a dose of 720 mg in 150 ml normal saline is feasible and safe for COVID-19 ARDS patients and health care providers during the pandemic. Surfactant administration did not cause acute decompensation, may reduce mortality and mechanical ventilation duration in COVID-19 ARDS patients. This study supports the future performance of randomized clinical trials evaluating the efficacy of meticulous sub-bronchial lavage with surfactant as treatment for patients with COVID-19 ARDS.


Subject(s)
Biological Products/administration & dosage , COVID-19/drug therapy , Lung/drug effects , Phospholipids/administration & dosage , Pulmonary Surfactants/administration & dosage , Aged , Biological Products/adverse effects , Bronchoscopy , COVID-19/diagnosis , COVID-19/mortality , COVID-19/physiopathology , Feasibility Studies , Female , Humans , Lung/physiopathology , Male , Middle Aged , Phospholipids/adverse effects , Pilot Projects , Pulmonary Surfactants/adverse effects , Respiration, Artificial , Retrospective Studies , Time Factors , Treatment Outcome
16.
Crit Care Med ; 49(3): 503-516, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1010657

ABSTRACT

OBJECTIVES: Respiratory failure, multiple organ failure, shortness of breath, recovery, and mortality have been identified as critically important core outcomes by more than 9300 patients, health professionals, and the public from 111 countries in the global coronavirus disease 2019 core outcome set initiative. The aim of this project was to establish the core outcome measures for these domains for trials in coronavirus disease 2019. DESIGN: Three online consensus workshops were convened to establish outcome measures for the four core domains of respiratory failure, multiple organ failure, shortness of breath, and recovery. SETTING: International. PATIENTS: About 130 participants (patients, public, and health professionals) from 17 countries attended the three workshops. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Respiratory failure, assessed by the need for respiratory support based on the World Health Organization Clinical Progression Scale, was considered pragmatic, objective, and with broad applicability to various clinical scenarios. The Sequential Organ Failure Assessment was recommended for multiple organ failure, because it was routinely used in trials and clinical care, well validated, and feasible. The Modified Medical Research Council measure for shortness of breath, with minor adaptations (recall period of 24 hr to capture daily fluctuations and inclusion of activities to ensure relevance and to capture the extreme severity of shortness of breath in people with coronavirus disease 2019), was regarded as fit for purpose for this indication. The recovery measure was developed de novo and defined as the absence of symptoms, resumption of usual daily activities, and return to the previous state of health prior to the illness, using a 5-point Likert scale, and was endorsed. CONCLUSIONS: The coronavirus disease 2019 core outcome set recommended core outcome measures have content validity and are considered the most feasible and acceptable among existing measures. Implementation of the core outcome measures in trials in coronavirus disease 2019 will ensure consistency and relevance of the evidence to inform decision-making and care of patients with coronavirus disease 2019.


Subject(s)
COVID-19/epidemiology , COVID-19/prevention & control , Clinical Trials as Topic , Outcome Assessment, Health Care/standards , Practice Guidelines as Topic , Research Design , Dyspnea , Humans , Multiple Organ Failure , Recovery of Function , Reproducibility of Results , Respiratory Insufficiency
17.
BMJ Open ; 10(12): e040768, 2020 12 07.
Article in English | MEDLINE | ID: covidwho-962846

ABSTRACT

INTRODUCTION: The COVID-19 epidemic grows and there are clinical trials of antivirals. There is an opportunity to complement these trials with investigation of angiotensin II type 1 receptor blockers (ARBs) because an ARB (losartan) was effective in murine influenza pneumonia. METHODS AND ANALYSIS: Our innovative design includes: ARBs; alignment with the WHO Ordinal Scale (primary endpoint) to align with other COVID-19 trials; joint longitudinal analysis; and predictive biomarkers (angiotensins I, 1-7, II and ACE1 and ACE2). Our hypothesis is: ARBs decrease the need for hospitalisation, severity (need for ventilation, vasopressors, extracorporeal membrane oxygenation or renal replacement therapy) or mortality of hospitalised COVID-19 infected adults. Our two-pronged multicentre pragmatic observational cohort study examines safety and effectiveness of ARBs in (1) hospitalised adult patients with COVID-19 and (2) out-patients already on or not on ARBs. The primary outcome will be evaluated by ordinal logistic regression and main secondary outcomes by both joint longitudinal modelling analyses. We will compare rates of hospitalisation of ARB-exposed versus not ARB-exposed patients. We will also determine whether continuing ARBs or not decreases the primary outcome. Based on published COVID-19 cohorts, assuming 15% of patients are ARB-exposed, a total sample size of 497 patients can detect a proportional OR of 0.5 (alpha=0.05, 80% power) comparing WHO scale of ARB-exposed versus non-ARB-exposed patients. ETHICS AND DISSEMINATION: This study has core institution approval (UBC Providence Healthcare Research Ethics Board) and site institution approvals (Health Research Ethics Board, University of Alberta; Comite d'etique de la recerche, CHU Sainte Justine (for McGill University and University of Sherbrook); Conjoint Health Research Ethics Board, University of Calgary; Queen's University Health Sciences & Affiliated Hospitals Research Ethics Board; Research Ethics Board, Sunnybrook Health Sciences Centre; Veritas Independent Research Board (for Humber River Hospital); Mount Sinai Hospital Research Ethics Board; Unity Health Toronto Research Ethics Board, St. Michael's Hospital). Results will be disseminated by peer-review publication and social media releases. TRIAL REGISTRATION NUMBER: NCT04510623.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/therapeutic use , COVID-19/drug therapy , Angiotensin II Type 1 Receptor Blockers/pharmacokinetics , Humans , Logistic Models , Multicenter Studies as Topic , Pandemics , Pragmatic Clinical Trials as Topic , Prospective Studies , SARS-CoV-2 , Treatment Outcome
18.
J Thromb Haemost ; 18(11): 2958-2967, 2020 11.
Article in English | MEDLINE | ID: covidwho-744785

ABSTRACT

INTRODUCTION: Coronavirus disease (COVID-19) is associated with a high incidence of thrombosis and mortality despite standard anticoagulant thromboprophylaxis. There is equipoise regarding the optimal dose of anticoagulant intervention in hospitalized patients with COVID-19 and consequently, immediate answers from high-quality randomized trials are needed. METHODS: The World Health Organization's International Clinical Trials Registry Platform was searched on June 17, 2020 for randomized controlled trials comparing increased dose to standard dose anticoagulant interventions in hospitalized COVID-19 patients. Two authors independently screened the full records for eligibility and extracted data in duplicate. RESULTS: A total of 20 trials were included in the review. All trials are open label, 5 trials use an adaptive design, 1 trial uses a factorial design, 2 trials combine multi-arm parallel group and factorial designs in flexible platform trials, and at least 15 trials have multiple study sites. With individual target sample sizes ranging from 30 to 3000 participants, the pooled sample size of all included trials is 12 568 participants. Two trials include only intensive care unit patients, and 10 trials base patient eligibility on elevated D-dimer levels. Therapeutic intensity anticoagulation is evaluated in 14 trials. All-cause mortality is part of the primary outcome in 14 trials. DISCUSSION: Several trials evaluate different dose regimens of anticoagulant interventions in hospitalized patients with COVID-19. Because these trials compete for sites and study participants, a collaborative effort is needed to complete trials faster, conduct pooled analyses and bring effective interventions to patients more quickly.


Subject(s)
Anticoagulants/administration & dosage , COVID-19/drug therapy , Hospitalization , International Cooperation , Thrombosis/prevention & control , Venous Thromboembolism/prevention & control , Anticoagulants/adverse effects , COVID-19/blood , COVID-19/diagnosis , COVID-19/mortality , Cooperative Behavior , Humans , Multicenter Studies as Topic , Patient Selection , Randomized Controlled Trials as Topic , Risk Assessment , Risk Factors , Thrombosis/blood , Thrombosis/diagnosis , Thrombosis/mortality , Treatment Outcome , Venous Thromboembolism/blood , Venous Thromboembolism/diagnosis , Venous Thromboembolism/mortality
19.
JAMA ; 324(13): 1330-1341, 2020 10 06.
Article in English | MEDLINE | ID: covidwho-739604

ABSTRACT

Importance: Effective therapies for patients with coronavirus disease 2019 (COVID-19) are needed, and clinical trial data have demonstrated that low-dose dexamethasone reduced mortality in hospitalized patients with COVID-19 who required respiratory support. Objective: To estimate the association between administration of corticosteroids compared with usual care or placebo and 28-day all-cause mortality. Design, Setting, and Participants: Prospective meta-analysis that pooled data from 7 randomized clinical trials that evaluated the efficacy of corticosteroids in 1703 critically ill patients with COVID-19. The trials were conducted in 12 countries from February 26, 2020, to June 9, 2020, and the date of final follow-up was July 6, 2020. Pooled data were aggregated from the individual trials, overall, and in predefined subgroups. Risk of bias was assessed using the Cochrane Risk of Bias Assessment Tool. Inconsistency among trial results was assessed using the I2 statistic. The primary analysis was an inverse variance-weighted fixed-effect meta-analysis of overall mortality, with the association between the intervention and mortality quantified using odds ratios (ORs). Random-effects meta-analyses also were conducted (with the Paule-Mandel estimate of heterogeneity and the Hartung-Knapp adjustment) and an inverse variance-weighted fixed-effect analysis using risk ratios. Exposures: Patients had been randomized to receive systemic dexamethasone, hydrocortisone, or methylprednisolone (678 patients) or to receive usual care or placebo (1025 patients). Main Outcomes and Measures: The primary outcome measure was all-cause mortality at 28 days after randomization. A secondary outcome was investigator-defined serious adverse events. Results: A total of 1703 patients (median age, 60 years [interquartile range, 52-68 years]; 488 [29%] women) were included in the analysis. Risk of bias was assessed as "low" for 6 of the 7 mortality results and as "some concerns" in 1 trial because of the randomization method. Five trials reported mortality at 28 days, 1 trial at 21 days, and 1 trial at 30 days. There were 222 deaths among the 678 patients randomized to corticosteroids and 425 deaths among the 1025 patients randomized to usual care or placebo (summary OR, 0.66 [95% CI, 0.53-0.82]; P < .001 based on a fixed-effect meta-analysis). There was little inconsistency between the trial results (I2 = 15.6%; P = .31 for heterogeneity) and the summary OR was 0.70 (95% CI, 0.48-1.01; P = .053) based on the random-effects meta-analysis. The fixed-effect summary OR for the association with mortality was 0.64 (95% CI, 0.50-0.82; P < .001) for dexamethasone compared with usual care or placebo (3 trials, 1282 patients, and 527 deaths), the OR was 0.69 (95% CI, 0.43-1.12; P = .13) for hydrocortisone (3 trials, 374 patients, and 94 deaths), and the OR was 0.91 (95% CI, 0.29-2.87; P = .87) for methylprednisolone (1 trial, 47 patients, and 26 deaths). Among the 6 trials that reported serious adverse events, 64 events occurred among 354 patients randomized to corticosteroids and 80 events occurred among 342 patients randomized to usual care or placebo. Conclusions and Relevance: In this prospective meta-analysis of clinical trials of critically ill patients with COVID-19, administration of systemic corticosteroids, compared with usual care or placebo, was associated with lower 28-day all-cause mortality.


Subject(s)
Adrenal Cortex Hormones/therapeutic use , Coronavirus Infections/drug therapy , Glucocorticoids/therapeutic use , Pneumonia, Viral/drug therapy , Betacoronavirus , COVID-19 , Cause of Death , Coronavirus Infections/mortality , Critical Illness , Dexamethasone/therapeutic use , Humans , Hydrocortisone/therapeutic use , Methylprednisolone/therapeutic use , Pandemics , Pneumonia, Viral/mortality , Randomized Controlled Trials as Topic , SARS-CoV-2
20.
Trials ; 21(1): 734, 2020 Aug 24.
Article in English | MEDLINE | ID: covidwho-727295

ABSTRACT

OBJECTIVES: Primary objective: To estimate the effect of corticosteroids compared with usual care or placebo on mortality up to 28 days after randomization. Secondary objectives: To examine whether the effect of corticosteroids compared with usual care or placebo on mortality up to 28 days after randomization varies between subgroups related to treatment characteristics, disease severity at the time of randomization, patient characteristics, or risk of bias. To examine the effect of corticosteroids compared with usual care or placebo on serious adverse events. STUDY DESIGN: Prospective meta-analysis of randomized controlled trials. Both placebo-controlled and open-label trials are eligible. PARTICIPANTS: Hospitalised, critically ill patients with suspected or confirmed COVID-19. INTERVENTION AND COMPARATOR: Intervention groups will have received therapeutic doses of a steroid (dexamethasone, hydrocortisone or methylprednisolone) with IV or oral administration immediately after randomization. The comparator groups will have received standard of care or usual care or placebo. MAIN OUTCOME: All-cause mortality up to 28 days after randomization. SEARCH METHODS: Systematic searching of clinicaltrials.gov , EudraCT, the WHO ISRCTN registry, and the Chinese clinical trials registry. Additionally, research and WHO networks will be asked for relevant trials. RISK OF BIAS ASSESSMENTS: These will be based on the Cochrane RoB 2 tool, and will use structured information provided by the trial investigators on a form designed for this prospective meta-analysis. We will use GRADE to assess the certainty of the evidence. STATISTICAL ANALYSES: Trial investigators will provide data on the numbers of participants who did and did not experience each outcome according to intervention group, overall and in specified subgroups. We will conduct fixed-effect (primary analysis) and random-effects (Paule-Mandel estimate of heterogeneity and Hartung-Knapp adjustment) meta-analyses. We will quantify inconsistency in effects between trials using I2 statistics. Evidence for subgroup effects will be quantified by ratios of odds ratios comparing effects in the subgroups, and corresponding interaction p-values. Comparisons between subgroups defined by trial characteristics will be made using random-effects meta-regression. Comparisons between subgroups defined by patient characteristics will be made by estimating trial-specific ratios of odds ratios comparing intervention effects between subgroups then combining these using random-effects meta-analysis. Steroid interventions will be classified as high or low dose according to whether the dose is greater or less than or equal to 400 mg hydrocortisone per day or equivalent. We will use network meta-analysis methods to make comparisons between the effects of high and low dose steroid interventions (because one trial randomized participants to both low and high dose steroid arms). PROSPERO REGISTRATION NUMBER: CRD42020197242 FULL PROTOCOL: The full protocol for this prospective meta-analysis is attached as an additional file, accessible from the Trials website (Additional file 1). To expedite dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol for the systematic review.


Subject(s)
Coronavirus Infections/drug therapy , Glucocorticoids/therapeutic use , Pneumonia, Viral/drug therapy , Adrenal Cortex Hormones/therapeutic use , Betacoronavirus , COVID-19 , Critical Illness , Dexamethasone/therapeutic use , Humans , Hydrocortisone/therapeutic use , Methylprednisolone/therapeutic use , Pandemics , Prospective Studies , Randomized Controlled Trials as Topic , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL