Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
MMWR - Morbidity & Mortality Weekly Report ; 71(36):1151-1154, 2022.
Article in English | MEDLINE | ID: covidwho-2025811

ABSTRACT

Before emergence in late 2021 of the highly transmissible B.1.1.529 (Omicron) variant of SARS-CoV-2, the virus that causes COVID-19 (1,2), several studies demonstrated that SARS-CoV-2 was unlikely to be cultured from specimens with high cycle threshold (Ct) values from real-time reverse transcription-polymerase chain reaction (RT-PCR) tests (suggesting low viral RNA levels) (3). Although CDC and others do not recommend attempting to correlate Ct values with the amount of infectious virus in the original specimen (4,5), low Ct values are sometimes used as surrogate markers for infectiousness in clinical, public health, or research settings without access to virus culture (5). However, the consistency in reliability of this practice across SARS-CoV-2 variants remains uncertain because Omicron-specific data on infectious virus shedding, including its relationship with RNA levels, are limited. In the current analysis, nasal specimens collected from an ongoing longitudinal cohortP (6,7) of nonhospitalized participants with positive SARS-CoV-2 test results living in the San Francisco Bay Area** were used to generate Ct values and assess for the presence of culturable SARS-CoV-2 virus;findings were compared between specimens from participants infected with pre-Omicron variants and those infected with the Omicron BA.1 sublineage. Among specimens with culturable virus detected, Ct values were higher (suggesting lower RNA levels) during Omicron BA.1 infections than during pre-Omicron infections, suggesting variant-specific differences in viral dynamics. Supporting CDC guidance, these data show that Ct values likely do not provide a consistent proxy for infectiousness across SARS-CoV-2 variants.

2.
PLoS Pathog ; 18(9):e1010802, 2022.
Article in English | PubMed | ID: covidwho-2021984

ABSTRACT

The impact of vaccination on SARS-CoV-2 infectiousness is not well understood. We compared longitudinal viral shedding dynamics in unvaccinated and fully vaccinated adults. SARS-CoV-2-infected adults were enrolled within 5 days of symptom onset and nasal specimens were self-collected daily for two weeks and intermittently for an additional two weeks. SARS-CoV-2 RNA load and infectious virus were analyzed relative to symptom onset stratified by vaccination status. We tested 1080 nasal specimens from 52 unvaccinated adults enrolled in the pre-Delta period and 32 fully vaccinated adults with predominantly Delta infections. While we observed no differences by vaccination status in maximum RNA levels, maximum infectious titers and the median duration of viral RNA shedding, the rate of decay from the maximum RNA load was faster among vaccinated;maximum infectious titers and maximum RNA levels were highly correlated. Furthermore, amongst participants with infectious virus, median duration of infectious virus detection was reduced from 7.5 days (IQR: 6.0-9.0) in unvaccinated participants to 6 days (IQR: 5.0-8.0) in those vaccinated (P = 0.02). Accordingly, the odds of shedding infectious virus from days 6 to 12 post-onset were lower among vaccinated participants than unvaccinated participants (OR 0.42 95% CI 0.19-0.89). These results indicate that vaccination had reduced the probability of shedding infectious virus after 5 days from symptom onset.

3.
J Infect Dis ; 2022.
Article in English | PubMed | ID: covidwho-2017962

ABSTRACT

Interferon (IFN)-specific autoantibodies have been implicated in severe COVID-19 and have been proposed as a potential driver of the persistent symptoms characterizing Long COVID, a type of post-acute sequelae of SARS-CoV-2 infection (PASC). We report than only two of 215 SARS-CoV-2 convalescent participants tested over 394 timepoints, including 121 people experiencing Long COVID symptoms, had detectable IFN-α2 antibodies. Both had been hospitalized during the acute phase of the infection. These data suggest that persistent anti-IFN antibodies, although a potential driver of severe COVID-19, are unlikely to contribute to Long COVID symptoms in the post-acute phase of the infection.

4.
Topics in Antiviral Medicine ; 30(1 SUPPL):247-248, 2022.
Article in English | EMBASE | ID: covidwho-1880706

ABSTRACT

Background: The biologic mechanisms underlying neurologic post-acute-sequelae of SARS-CoV-2 infection (PASC) are incompletely understood. We measured plasma markers of neuronal injury (glial fibrillary acidic protein [GFAP], neurofilament light chain [NfL]) and inflammation among a cohort of people with prior confirmed SARS-CoV-2 infection at early and late recovery following the initial illness (defined as < and > 90 days since COVID-19 onset, respectively). We hypothesized that those experiencing persistent neurologic symptoms would have elevations in these markers. Methods: The primary clinical outcome was the presence of self-reported central nervous system (CNS) PASC symptoms during the late recovery timepoint. We compared fold-changes in marker values between those with and without CNS PASC symptoms using linear mixed effects models and examined relationships between neurologic and immunologic markers using rank linear correlations. Results: Of 121 individuals, 52 reported CNS PASC symptoms. During early recovery, those who went on to report CNS PASC symptoms had elevations in GFAP (1.3-fold higher mean ratio, 95% CI 1.04-1.63, p=0.02), but not NfL (1.06-fold higher mean ratio, 95% CI 0.89-1.26, p=0.54). During late recovery, neither GFAP nor NfL levels were elevated among those with CNS PASC symptoms. Although absolute levels of NfL did not differ, those who reported CNS PASC symptoms demonstrated a stronger downward trend over time in comparison to those who did not report CNS PASC symptoms (p=0.041). Those who went on to report CNS PASC also exhibited elevations in IL-6 (48% higher during early recovery and 38% higher during late recovery), MCP-1 (19% higher during early recovery), and TNF-alpha (19% higher during early recovery and 13% higher during late recovery). GFAP and NfL correlated with levels of several immune markers during early recovery (MCP-1, IL-6, TNF-a, IFN-g);these correlations were attenuated during late recovery. Conclusion: Self-reported neurologic symptoms present approximately four months following SARS-CoV-2 infection are associated with elevations in markers of neurologic injury and inflammation at early recovery timepoints, suggesting that early injury can result in long-term disease. The correlation of GFAP and NfL with markers of systemic immune activation suggests one possible mechanism that might contribute to these symptoms. Additional work will be needed to better characterize these processes and to identify interventions to prevent or treat this condition.

5.
PubMed; 2022.
Preprint in English | PubMed | ID: ppcovidwho-338328

ABSTRACT

BACKGROUND: Mechanisms underlying persistent cardiopulmonary symptoms following SARS-CoV-2 infection (post-acute sequelae of COVID-19 "PASC" or "Long COVID") remain unclear. The purpose of this study was to elucidate the pathophysiology of cardiopulmonary PASC using multimodality cardiovascular imaging including cardiopulmonary exercise testing (CPET), cardiac magnetic resonance imaging (CMR) and ambulatory rhythm monitoring. METHODS: We performed CMR, CPET, and ambulatory rhythm monitoring among adults > 1 year after PCR-confirmed SARS-CoV-2 infection in the UCSF Long-Term Impact of Infection with Novel Coronavirus cohort (LIINC;NCT04362150 ) and correlated findings with previously measured biomarkers. We used logistic regression to estimate associations with PASC symptoms (dyspnea, chest pain, palpitations, and fatigue) adjusted for confounders and linear regression to estimate differences between those with and without symptoms adjusted for confounders. RESULTS: Out of 120 participants in the cohort, 46 participants (unselected for symptom status) had at least one advanced cardiac test performed at median 17 months following initial SARS-CoV-2 infection. Median age was 52 (IQR 42-61), 18 (39%) were female, and 6 (13%) were hospitalized for severe acute infection. On CMR (n=39), higher extracellular volume was associated with symptoms, but no evidence of late-gadolinium enhancement or differences in T1 or T2 mapping were demonstrated. We did not find arrhythmias on ambulatory monitoring. In contrast, on CPET (n=39), 13/23 (57%) with cardiopulmonary symptoms or fatigue had reduced exercise capacity (peak VO 2 <85% predicted) compared to 2/16 (13%) without symptoms (p=0.008). The adjusted difference in peak VO 2 was 5.9 ml/kg/min lower (-9.6 to -2.3;p=0.002) or -21% predicted (-35 to -7;p=0.006) among those with symptoms. Chronotropic incompetence was the primary abnormality among 9/15 (60%) with reduced peak VO 2 . Adjusted heart rate reserve <80% was associated with reduced exercise capacity (OR 15.6, 95%CI 1.30-187;p=0.03). Inflammatory markers (hsCRP, IL-6, TNF-alpha) and SARS-CoV-2 antibody levels measured early in PASC were negatively correlated with peak VO 2 more than 1 year later. CONCLUSIONS: Cardiopulmonary symptoms and elevated inflammatory markers present early in PASC are associated with objectively reduced exercise capacity measured on cardiopulmonary exercise testing more than 1 year following COVID-19. Chronotropic incompetence may explain reduced exercise capacity among some individuals with PASC. Clinical Perspective: What is New?Elevated inflammatory markers in early post-acute COVID-19 are associated with reduced exercise capacity more than 1 year later.Impaired chronotropic response to exercise is associated with reduced exercise capacity and cardiopulmonary symptoms more than 1 year after SARS-CoV-2 infection.Findings on ambulatory rhythm monitoring point to perturbed autonomic function, while cardiac MRI findings argue against myocardial dysfunction and myocarditis. Clinical Implications: Cardiopulmonary testing to identify etiologies of persistent symptoms in post-acute sequalae of COVID-19 or "Long COVID" should be performed in a manner that allows for assessment of heart rate response to exercise. Therapeutic trials of anti-inflammatory and exercise strategies in PASC are urgently needed and should include assessment of symptoms and objective testing with cardiopulmonary exercise testing.

7.
PUBMED; 2021.
Preprint in English | PUBMED | ID: ppcovidwho-293448

ABSTRACT

Serosurveys are a key resource for measuring SARS-CoV-2 cumulative incidence. A growing body of evidence suggests that asymptomatic and mild infections (together making up over 95% of all infections) are associated with lower antibody titers than severe infections. Antibody levels also peak a few weeks after infection and decay gradually. We developed a statistical approach to produce adjusted estimates of seroprevalence from raw serosurvey results that account for these sources of spectrum bias. We incorporate data on antibody responses on multiple assays from a post-infection longitudinal cohort, along with epidemic time series to account for the timing of a serosurvey relative to how recently individuals may have been infected. We applied this method to produce adjusted seroprevalence estimates from five large-scale SARS-CoV-2 serosurveys across different settings and study designs. We identify substantial differences between reported and adjusted estimates of over two-fold in the results of some surveys, and provide a tool for practitioners to generate adjusted estimates with pre-set or custom parameter values. While unprecedented efforts have been launched to generate SARS-CoV-2 seroprevalence estimates over this past year, interpretation of results from these studies requires properly accounting for both population-level epidemiologic context and individual-level immune dynamics.

8.
Annals of Behavioral Medicine ; 55:S614-S614, 2021.
Article in English | Web of Science | ID: covidwho-1250463
SELECTION OF CITATIONS
SEARCH DETAIL