Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
iScience ; 25(5): 104311, 2022 May 20.
Article in English | MEDLINE | ID: covidwho-1804381

ABSTRACT

Novel strategies are needed to identify drug targets and treatments for the COVID-19 pandemic. The altered gene expression of virus-infected host cells provides an opportunity to specifically inhibit viral propagation via targeting the synthetic lethal and synthetic dosage lethal (SL/SDL) partners of such altered host genes. Pursuing this disparate antiviral strategy, here we comprehensively analyzed multiple in vitro and in vivo bulk and single-cell RNA-sequencing datasets of SARS-CoV-2 infection to predict clinically relevant candidate antiviral targets that are SL/SDL with altered host genes. The predicted SL/SDL-based targets are highly enriched for infected cell inhibiting genes reported in four SARS-CoV-2 CRISPR-Cas9 genome-wide genetic screens. We further selected a focused subset of 26 genes that we experimentally tested in a targeted siRNA screen using human Caco-2 cells. Notably, as predicted, knocking down these targets reduced viral replication and cell viability only under the infected condition without harming noninfected healthy cells.

2.
Viruses ; 14(3)2022 03 15.
Article in English | MEDLINE | ID: covidwho-1742732

ABSTRACT

The novel coronavirus SARS-CoV-2 is responsible for the ongoing COVID-19 pandemic and has caused a major health and economic burden worldwide. Understanding how SARS-CoV-2 viral proteins behave in host cells can reveal underlying mechanisms of pathogenesis and assist in development of antiviral therapies. Here, the cellular impact of expressing SARS-CoV-2 viral proteins was studied by global proteomic analysis, and proximity biotinylation (BioID) was used to map the SARS-CoV-2 virus-host interactome in human lung cancer-derived cells. Functional enrichment analyses revealed previously reported and unreported cellular pathways that are associated with SARS-CoV-2 proteins. We have established a website to host the proteomic data to allow for public access and continued analysis of host-viral protein associations and whole-cell proteomes of cells expressing the viral-BioID fusion proteins. Furthermore, we identified 66 high-confidence interactions by comparing this study with previous reports, providing a strong foundation for future follow-up studies. Finally, we cross-referenced candidate interactors with the CLUE drug library to identify potential therapeutics for drug-repurposing efforts. Collectively, these studies provide a valuable resource to uncover novel SARS-CoV-2 biology and inform development of antivirals.


Subject(s)
COVID-19 , SARS-CoV-2 , Biotinylation , Humans , Pandemics , Proteomics
3.
Frontiers in immunology ; 12, 2021.
Article in English | EuropePMC | ID: covidwho-1610187

ABSTRACT

Infection with the novel coronavirus, SARS-CoV-2, results in pneumonia and other respiratory symptoms as well as pathologies at diverse anatomical sites. An outstanding question is whether these diverse pathologies are due to replication of the virus in these anatomical compartments and how and when the virus reaches those sites. To answer these outstanding questions and study the spatiotemporal dynamics of SARS-CoV-2 infection a method for tracking viral spread in vivo is needed. We developed a novel, fluorescently labeled, antibody-based in vivo probe system using the anti-spike monoclonal antibody CR3022 and demonstrated that it could successfully identify sites of SARS-CoV-2 infection in a rhesus macaque model of COVID-19. Our results showed that the fluorescent signal from our antibody-based probe could differentiate whole lungs of macaques infected for 9 days from those infected for 2 or 3 days. Additionally, the probe signal corroborated the frequency and density of infected cells in individual tissue blocks from infected macaques. These results provide proof of concept for the use of in vivo antibody-based probes to study SARS-CoV-2 infection dynamics in rhesus macaques.

4.
Mol Syst Biol ; 17(11): e10260, 2021 11.
Article in English | MEDLINE | ID: covidwho-1488874

ABSTRACT

Tremendous progress has been made to control the COVID-19 pandemic caused by the SARS-CoV-2 virus. However, effective therapeutic options are still rare. Drug repurposing and combination represent practical strategies to address this urgent unmet medical need. Viruses, including coronaviruses, are known to hijack host metabolism to facilitate viral proliferation, making targeting host metabolism a promising antiviral approach. Here, we describe an integrated analysis of 12 published in vitro and human patient gene expression datasets on SARS-CoV-2 infection using genome-scale metabolic modeling (GEM), revealing complicated host metabolism reprogramming during SARS-CoV-2 infection. We next applied the GEM-based metabolic transformation algorithm to predict anti-SARS-CoV-2 targets that counteract the virus-induced metabolic changes. We successfully validated these targets using published drug and genetic screen data and by performing an siRNA assay in Caco-2 cells. Further generating and analyzing RNA-sequencing data of remdesivir-treated Vero E6 cell samples, we predicted metabolic targets acting in combination with remdesivir, an approved anti-SARS-CoV-2 drug. Our study provides clinical data-supported candidate anti-SARS-CoV-2 targets for future evaluation, demonstrating host metabolism targeting as a promising antiviral strategy.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19/metabolism , Metabolic Networks and Pathways/genetics , Pandemics , SARS-CoV-2/physiology , Adenosine Monophosphate/therapeutic use , Alanine/therapeutic use , Animals , COVID-19/drug therapy , COVID-19/virology , Caco-2 Cells , Chlorocebus aethiops , Datasets as Topic , Drug Development , Drug Repositioning , Host-Pathogen Interactions , Humans , RNA, Small Interfering , Sequence Analysis, RNA , Vero Cells
5.
Mol Cell ; 81(11): 2261-2265, 2021 06 03.
Article in English | MEDLINE | ID: covidwho-1246090

ABSTRACT

COVID-19 altered our lives and pushed scientific research to operate at breakneck speed, leading to significant breakthroughs in record time. We asked experts in the field about the challenges they faced in transitioning, rapidly but safely, to working on the virus while navigating the shutdown. Their voices converge on the importance of teamwork, forging new collaborations, and working toward a shared goal.


Subject(s)
Biomedical Research , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics , Quarantine , SARS-CoV-2 , Humans , Poetry as Topic
6.
Mol Cell ; 81(12): 2656-2668.e8, 2021 06 17.
Article in English | MEDLINE | ID: covidwho-1179919

ABSTRACT

A deficient interferon (IFN) response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been implicated as a determinant of severe coronavirus disease 2019 (COVID-19). To identify the molecular effectors that govern IFN control of SARS-CoV-2 infection, we conducted a large-scale gain-of-function analysis that evaluated the impact of human IFN-stimulated genes (ISGs) on viral replication. A limited subset of ISGs were found to control viral infection, including endosomal factors inhibiting viral entry, RNA binding proteins suppressing viral RNA synthesis, and a highly enriched cluster of endoplasmic reticulum (ER)/Golgi-resident ISGs inhibiting viral assembly/egress. These included broad-acting antiviral ISGs and eight ISGs that specifically inhibited SARS-CoV-2 and SARS-CoV-1 replication. Among the broad-acting ISGs was BST2/tetherin, which impeded viral release and is antagonized by SARS-CoV-2 Orf7a protein. Overall, these data illuminate a set of ISGs that underlie innate immune control of SARS-CoV-2/SARS-CoV-1 infection, which will facilitate the understanding of host determinants that impact disease severity and offer potential therapeutic strategies for COVID-19.


Subject(s)
Antigens, CD/genetics , Host-Pathogen Interactions/genetics , Interferon Regulatory Factors/genetics , Interferon Type I/genetics , SARS-CoV-2/genetics , Viral Proteins/genetics , Animals , Antigens, CD/chemistry , Antigens, CD/immunology , Binding Sites , Cell Line, Tumor , Chlorocebus aethiops , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/immunology , Endoplasmic Reticulum/virology , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/genetics , GPI-Linked Proteins/immunology , Gene Expression Regulation , Golgi Apparatus/genetics , Golgi Apparatus/immunology , Golgi Apparatus/virology , HEK293 Cells , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Interferon Regulatory Factors/classification , Interferon Regulatory Factors/immunology , Interferon Type I/immunology , Molecular Docking Simulation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , SARS-CoV-2/immunology , Signal Transduction , Vero Cells , Viral Proteins/chemistry , Viral Proteins/immunology , Virus Internalization , Virus Release/genetics , Virus Release/immunology , Virus Replication/genetics , Virus Replication/immunology
7.
Cell Rep ; 34(2): 108628, 2021 01 12.
Article in English | MEDLINE | ID: covidwho-1036973

ABSTRACT

Recent studies have profiled the innate immune signatures in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and suggest that cellular responses to viral challenge may affect disease severity. Yet the molecular events that underlie cellular recognition and response to SARS-CoV-2 infection remain to be elucidated. Here, we find that SARS-CoV-2 replication induces a delayed interferon (IFN) response in lung epithelial cells. By screening 16 putative sensors involved in sensing of RNA virus infection, we found that MDA5 and LGP2 primarily regulate IFN induction in response to SARS-CoV-2 infection. Further analyses revealed that viral intermediates specifically activate the IFN response through MDA5-mediated sensing. Additionally, we find that IRF3, IRF5, and NF-κB/p65 are the key transcription factors regulating the IFN response during SARS-CoV-2 infection. In summary, these findings provide critical insights into the molecular basis of the innate immune recognition and signaling response to SARS-CoV-2.


Subject(s)
Immunity, Innate , Interferon-Induced Helicase, IFIH1/metabolism , SARS-CoV-2/physiology , COVID-19/pathology , COVID-19/virology , Cell Line , Epithelial Cells/cytology , Epithelial Cells/immunology , Epithelial Cells/virology , Humans , Induced Pluripotent Stem Cells/cytology , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Interferons/genetics , Interferons/metabolism , RNA Helicases/metabolism , RNA Interference , RNA, Double-Stranded/metabolism , RNA, Small Interfering/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Signal Transduction , Transcription Factor RelA/metabolism , Virus Replication
8.
SSRN; 2020.
Preprint | SSRN | ID: ppcovidwho-5301

ABSTRACT

Recent studies profiling the innate immune signatures in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) suggest that cellular responses to viral challenge impact disease severity. Yet, the molecular events that underlie cellular recognition and response to SARS-CoV-2 infection remains to be elucidated. Here, we find that SARS-CoV-2 replication induces a delayed interferon (IFN) response in lung epithelial cells. Through a survey of putative sensors involved in detection of RNA virus infection, we found that MDA5 and LGP2 primarily regulate IFN induction in response to SARS-CoV-2 infection. Additionally, we find that IRF-3, -5, and NF-kB/p65 are the key transcription factors regulating the IFN response during SARS-CoV-2 infection. In summary, these findings provide critical insights into the molecular basis of the innate immune recognition and signaling response to SARS-CoV-2. Funding: This work was supported by the following grants to the Sanford Burnham Prebys Medical Discovery Institute: DoD: W81XWH-20-1-0270;DHIPC: U19 AI118610;Fluomics/NOSI: U19 AI135972, as well as generous philanthropic donations from Dinah Ruch and Susan & James Blair. This work was additionally supported by the following grants to Northwestern University Feinberg School of Medicine: a CTSA supplement to NCATS: UL1 TR002389;a CTSA supplement to NUCATS with the generous support of the Dixon family: UL1 TR001422;and a Cancer Center supplement: P30 CA060553. Development and implementation of iPS cell technology for production of airway epithelial cells was supported by Incubation Program from Office of Society Academia Collaboration for Innovation, Kyoto University.

9.
Proc Natl Acad Sci U S A ; 117(45): 28344-28354, 2020 11 10.
Article in English | MEDLINE | ID: covidwho-887237

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic that is a serious global health problem. Evasion of IFN-mediated antiviral signaling is a common defense strategy that pathogenic viruses use to replicate and propagate in their host. In this study, we show that SARS-CoV-2 is able to efficiently block STAT1 and STAT2 nuclear translocation in order to impair transcriptional induction of IFN-stimulated genes (ISGs). Our results demonstrate that the viral accessory protein Orf6 exerts this anti-IFN activity. We found that SARS-CoV-2 Orf6 localizes at the nuclear pore complex (NPC) and directly interacts with Nup98-Rae1 via its C-terminal domain to impair docking of cargo-receptor (karyopherin/importin) complex and disrupt nuclear import. In addition, we show that a methionine-to-arginine substitution at residue 58 impairs Orf6 binding to the Nup98-Rae1 complex and abolishes its IFN antagonistic function. All together our data unravel a mechanism of viral antagonism in which a virus hijacks the Nup98-Rae1 complex to overcome the antiviral action of IFN.


Subject(s)
COVID-19/metabolism , Interferons/metabolism , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore/metabolism , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/metabolism , Viral Proteins/metabolism , Active Transport, Cell Nucleus , Animals , Binding Sites , Chlorocebus aethiops , HEK293 Cells , Humans , Nuclear Matrix-Associated Proteins/chemistry , Nuclear Matrix-Associated Proteins/metabolism , Nucleocytoplasmic Transport Proteins/chemistry , Nucleocytoplasmic Transport Proteins/metabolism , Protein Binding , Signal Transduction , Vero Cells
11.
Nature ; 586(7827): 113-119, 2020 10.
Article in English | MEDLINE | ID: covidwho-672174

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 has triggered an ongoing global pandemic of the severe pneumonia-like disease coronavirus disease 2019 (COVID-19)1. The development of a vaccine is likely to take at least 12-18 months, and the typical timeline for approval of a new antiviral therapeutic agent can exceed 10 years. Thus, repurposing of known drugs could substantially accelerate the deployment of new therapies for COVID-19. Here we profiled a library of drugs encompassing approximately 12,000 clinical-stage or Food and Drug Administration (FDA)-approved small molecules to identify candidate therapeutic drugs for COVID-19. We report the identification of 100 molecules that inhibit viral replication of SARS-CoV-2, including 21 drugs that exhibit dose-response relationships. Of these, thirteen were found to harbour effective concentrations commensurate with probable achievable therapeutic doses in patients, including the PIKfyve kinase inhibitor apilimod2-4 and the cysteine protease inhibitors MDL-28170, Z LVG CHN2, VBY-825 and ONO 5334. Notably, MDL-28170, ONO 5334 and apilimod were found to antagonize viral replication in human pneumocyte-like cells derived from induced pluripotent stem cells, and apilimod also demonstrated antiviral efficacy in a primary human lung explant model. Since most of the molecules identified in this study have already advanced into the clinic, their known pharmacological and human safety profiles will enable accelerated preclinical and clinical evaluation of these drugs for the treatment of COVID-19.


Subject(s)
Antiviral Agents/analysis , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Drug Evaluation, Preclinical , Drug Repositioning , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Alveolar Epithelial Cells/cytology , Alveolar Epithelial Cells/drug effects , Betacoronavirus/growth & development , COVID-19 , Cell Line , Cysteine Proteinase Inhibitors/analysis , Cysteine Proteinase Inhibitors/pharmacology , Dose-Response Relationship, Drug , Drug Synergism , Gene Expression Regulation/drug effects , Humans , Hydrazones , Induced Pluripotent Stem Cells/cytology , Models, Biological , Morpholines/analysis , Morpholines/pharmacology , Pandemics , Pyrimidines , Reproducibility of Results , SARS-CoV-2 , Small Molecule Libraries/analysis , Small Molecule Libraries/pharmacology , Triazines/analysis , Triazines/pharmacology , Virus Internalization/drug effects , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL