Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-337034

ABSTRACT

Reporter-expressing recombinant virus represents an excellent option and a powerful tool to investigate, among others, viral infection, pathogenicity, and transmission, as well as to identify therapeutic compounds that inhibit viral infection and prophylactic vaccines. To combat the still ongoing coronavirus disease 2019 (COVID-19) pandemic, we have established a robust bacterial artificial chromosome (BAC)-based reverse genetics (RG) system to rapidly generate recombinant severe acute respiratory syndrome coronavirus 2 (rSARS-CoV-2) to study the contribution of viral proteins in viral pathogenesis. In addition, we have also engineered reporter-expressing recombinant viruses in which we place the reporter genes upstream of the viral nucleocapsid (N) gene to promote high levels of reporter gene expression that facilitates the study of SARS-CoV-2 in vitro and in vivo. Although successful, the genetic manipulation of the BAC containing the entire SARS-CoV-2 genome of ~30,000 nucleotides, is challenging. Herein, we depict the technical details to engineer rSARS-CoV-2 expressing reporter genes using the BAC-based RG approach. We describe i) assembly of the full-length (FL) SARS-CoV-2 genome sequences into the empty pBeloBAC, ii) verification of the pBeloBAC-FL, iii) cloning of a Venus reporter gene into the pBeloBAC-FL, and iv) recovery of the Venus-expressing rSARS-CoV-2. By following this protocol, researchers with basic molecular biology and gene engineering techniques knowledge will be able to generate wild-type and reporter-expressing rSARS-CoV-2.

2.
Methods Mol Biol ; 2452: 259-289, 2022.
Article in English | MEDLINE | ID: covidwho-1844271

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), emerged in December 2019 in Wuhan, China, and rapidly spread throughout the world, threatening global public health. An animal model is a valuable and a crucial tool that allows understanding of nature in the pathogenesis of SARS-CoV-2 and its associated COVID-19 disease. Here we introduce detailed protocols of SARS-CoV-2 infection and COVID-19 disease using C57BL/6 (B6) transgenic mice expressing the human angiotensin-converting enzyme 2 (hACE2) from the human cytokeratin 18 promoter (K18 hACE2). To mimic natural SARS-CoV-2 infection, K18 hACE2 transgenic mice are infected intranasally under anesthesia. Upon infection, viral pathogenesis is determined by monitoring changes in body weight (morbidity) and monitoring survival (mortality), cytokine/chemokine responses, gross-lung pathology, histopathology, and viral replication in tissues. The presence of the virus and viral replication is evaluated by immunohistochemistry (IHC) and viral titrations, respectively, from the upper (nasal turbinate) and the lower (lungs) respiratory tracts, and nervous system (brain). Also, the immune response to SARS-CoV-2 infection is measured by cytokine/chemokine enzyme-linked immunosorbent assay (ELISA) from lung, spleen and brain homogenates to characterize the cytokine storm that hallmarks as one of the major causes of death caused by SARS-CoV-2 infection. This small rodent animal model based on the use of K18 hACE2 transgenic mice represents an excellent option to understand the pathogenicity of natural SARS-CoV-2 strains and its recently described Variants of Concern (VoC), and will be applicable to the identification and characterization of prophylactic (vaccine) and therapeutic (antiviral and/or neutralizing monoclonal antibodies) strategies for the prevention or treatment of SARS-CoV-2 infection or its associated COVID-19 disease.


Subject(s)
COVID-19 , Animals , Antibodies, Neutralizing , Chemokines , Cytokines , Disease Models, Animal , Lung , Mice , Mice, Inbred C57BL , Mice, Transgenic , SARS-CoV-2/genetics
3.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-330899

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to pose serious threats to global health. We previously reported that AAK1, BIKE and GAK, members of the Numb-associated kinase family, control intracellular trafficking of multiple RNA viruses during viral entry and assembly/egress. Here, using both genetic and pharmacological approaches, we probe the functional relevance of NAKs for SARS-CoV-2 infection. siRNA-mediated depletion of AAK1, BIKE, GAK, and STK16, the fourth member of the NAK family, suppressed SARS-CoV-2 infection in human lung epithelial cells. Both known and novel small molecules with potent AAK1/BIKE, GAK or STK16 activity suppressed SARS-CoV-2 infection. Moreover, combination treatment with the approved anti-cancer drugs, sunitinib and erlotinib, with potent anti-AAK1/BIKE and GAK activity, respectively, demonstrated synergistic effect against SARS-CoV-2 infection in vitro . Time-of-addition experiments revealed that pharmacological inhibition of AAK1 and BIKE suppressed viral entry as well as late stages of the SARS-CoV-2 life cycle. Lastly, suppression of NAKs expression by siRNAs inhibited entry of both wild type and SARS-CoV-2 pseudovirus. These findings provide insight into the roles of NAKs in SARS-CoV-2 infection and establish a proof-of-principle that pharmacological inhibition of NAKs can be potentially used as a host-targeted approach to treat SARS-CoV-2 with potential implications to other coronaviruses.

4.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-330377

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to a worldwide Coronavirus Disease 2019 (COVID-19) pandemic. Despite high efficacy of the authorized vaccines, protection against the surging variants of concern (VoC) was less robust. Live-attenuated vaccines (LAV) have been shown to elicit robust and long-term protection by induction of host innate and adaptive immune responses. We sought to develop a COVID-19 LAV by generating 3 double open reading frame (ORF)-deficient recombinant (r)SARS-CoV-2 simultaneously lacking two accessory open reading frame (ORF) proteins (ORF3a/ORF6, ORF3a/ORF7a, and ORF3a/ORF7b). Here, we report that these double ORF-deficient rSARS-CoV-2 have slower replication kinetics and reduced fitness in cultured cells as compared to their parental wild-type (WT) counterpart. Importantly, these double ORF-deficient rSARS-CoV-2 showed attenuation in both K18 hACE2 transgenic mice and golden Syrian hamsters. A single intranasal dose vaccination induced high levels of neutralizing antibodies against different SARS-CoV-2 VoC, and also activated viral component-specific T-cell responses. Notably, the double ORF-deficient rSARS-CoV-2 were able to protect, as determined by inhibition of viral replication, shedding, and transmission, against challenge with SARS-CoV-2. Collectively, our results demonstrate the feasibility to implement these double ORF-deficient rSARS-CoV-2 as safe, stable, immunogenic and protective LAV for the prevention of SARS-CoV-2 infection and associated COVID-19 disease.

5.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-329676

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) marks the third novel β-coronavirus to cause significant human mortality in the last two decades. Although vaccines are available, too few have been administered worldwide to keep the virus in check and to prevent mutations leading to immune escape. To determine if antibodies could be identified with universal coronavirus activity, plasma from convalescent subjects was screened for IgG against a stabilized pre-fusion SARS-CoV-2 spike S2 domain, which is highly conserved between human β-coronavirus. From these subjects, several S2-specific human monoclonal antibodies (hmAbs) were developed that neutralized SARS-CoV-2 with recognition of all variants of concern (VoC) tested (Beta, Gamma, Delta, Epsilon, and Omicron). The hmAb 1249A8 emerged as the most potent and broad hmAb, able to recognize all human β-coronavirus and neutralize SARS-CoV and MERS-CoV. 1249A8 demonstrated significant prophylactic activity in K18 hACE2 mice infected with SARS-CoV-2 lineage A and lineage B Beta, and Omicron VoC. 1249A8 delivered as a single 4 mg/kg intranasal (i.n.) dose to hamsters 12 hours following infection with SARS-CoV-2 Delta protected them from weight loss, with therapeutic activity further enhanced when combined with 1213H7, an S1-specific neutralizing hmAb. As little as 2 mg/kg of 1249A8 i.n. dose 12 hours following infection with SARS-CoV Urbani strain, protected hamsters from weight loss and significantly reduced upper and lower respiratory viral burden. These results indicate in vivo cooperativity between S1 and S2 specific neutralizing hmAbs and that potent universal coronavirus neutralizing mAbs with therapeutic potential can be induced in humans and can guide universal coronavirus vaccine development.

6.
Crit Rev Clin Lab Sci ; : 1-18, 2022 Feb 28.
Article in English | MEDLINE | ID: covidwho-1713385

ABSTRACT

With the advent of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic, several vaccines have been developed to mitigate its spread and prevent adverse consequences of the Coronavirus Disease 2019 (COVID-19). The mRNA technology is an unprecedented vaccine, usually given in two doses to prevent SARS-CoV-2 infections. Despite effectiveness and safety, inter-individual immune response heterogeneity has been observed in recipients of mRNA-based vaccines. As a novel disease, the specific immune response mechanism responsible for warding off COVID-19 remains unclear at this point. However, significant evidence suggests that humoral response plays a crucial role in affording immunoprotection and preventing debilitating sequelae from COVID-19. As such, this paper focused on the possible effects of age, sex, serostatus, and comorbidities on humoral response (i.e. total antibodies, IgG, and/or IgA) of different populations post-mRNA-based Pfizer-BioNTech vaccination. A systematic search of literature was performed through PubMed, Cochrane CENTRAL, Google Scholar, Science Direct, medRxiv, and Research Square. Studies were included if they reported humoral response to COVID-19 mRNA vaccines. A total of 32 studies were identified and reviewed, and the percent differences of means of reported antibody levels were calculated for comparison. Findings revealed that older individuals, male sex, seronegativity, and those with more comorbidities mounted less humoral immune response. Given these findings, several recommendations were proposed regarding the current vaccination practices. These include giving additional doses of vaccination for immunocompromised and elderly populations. Another recommendation is conducting clinical trials in giving a combined scheme of mRNA vaccines, protein vaccines, and vector-based vaccines.

8.
J Med Virol ; 94(7): 2939-2961, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1712153

ABSTRACT

Accumulating evidence shows a progressive decline in the efficacy of coronavirus disease 2019 (COVID-19) (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) messenger RNA (mRNA) vaccines such as Pfizer-BioNTech (mRNA BNT161b2) and Moderna (mRNA-1273) in preventing breakthrough infections due to diminishing humoral immunity over time. Thus, this review characterizes the kinetics of anti-SARS-CoV-2 antibodies after the second dose of a primary cycle of COVID-19 mRNA vaccination. A systematic search of the literature was performed and a total of 18 articles (N = 15 980 participants) were identified and reviewed. The percent difference of means of reported antibody titers was then calculated to determine the decline in humoral response after the peak levels postvaccination. Findings revealed that the peak humoral response was reached at 21-28 days after the second dose, after which serum levels progressively diminished at 4-6-month postvaccination. Additionally, results showed that regardless of age, sex, serostatus, and presence of comorbidities, longitudinal data reporting antibody measurement exhibited a decline of both anti-receptor binding domain immunoglobulin G (IgG) and anti-spike IgG, ranging from 94% to 95% at 90-180 days and 55%-85% at 140-160 days, respectively, after the peak antibody response. This suggests that the rate of antibody decline may be independent of patient-related factors and peak antibody titers but mainly a function of time and antibody class/molecular target. Hence, this study highlights the necessity of more efficient vaccination strategies to provide booster administration in attenuating the effects of waning immunity, especially in the appearance of new variants of concerns.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunity, Humoral , Immunoglobulin G , RNA, Messenger , Vaccination
9.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-319173

ABSTRACT

Remdesivir is the only small-molecule antiviral approved to date for COVID-19 treatment, but its wider use is limited by intravenous delivery. An orally bioavailable remdesivir analog may boost therapeutic benefit by facilitating early administration to non-hospitalized patients. This study characterized the anti-SARS-CoV-2 efficacy of GS-621763, an oral prodrug of remdesivir parent nucleoside GS-441524. Both GS-621763 and GS-441524 inhibited SARS-CoV-2, including variants of concern (VoC) in cell culture. Oral GS-621763 was efficiently converted to plasma metabolite GS-441524, and in lungs to the triphosphate metabolite identical to that generated by remdesivir, demonstrating a consistent mechanism of activity. Twice-daily oral administration of 10 mg/kg GS-621763 reduced SARS-CoV-2 burden to near-undetectable levels. When dosed therapeutically against VoC P.1 gamma (γ), oral GS-621763 blocked virus replication and prevented transmission to untreated contact animals. These results demonstrate therapeutic efficacy of a much-needed orally bioavailable analog of remdesivir in a relevant animal model of SARS-CoV-2 infection.

10.
PLoS Pathog ; 17(12): e1010174, 2021 12.
Article in English | MEDLINE | ID: covidwho-1624813

ABSTRACT

The mechanisms and consequences of genome evolution on viral fitness following host shifts are poorly understood. In addition, viral fitness -the ability of an organism to reproduce and survive- is multifactorial and thus difficult to quantify. Influenza A viruses (IAVs) circulate broadly among wild birds and have jumped into and become endemic in multiple mammalian hosts, including humans, pigs, dogs, seals, and horses. H3N8 equine influenza virus (EIV) is an endemic virus of horses that originated in birds and has been circulating uninterruptedly in equine populations since the early 1960s. Here, we used EIV to quantify changes in infection phenotype associated to viral fitness due to genome-wide changes acquired during long-term adaptation. We performed experimental infections of two mammalian cell lines and equine tracheal explants using the earliest H3N8 EIV isolated (A/equine/Uruguay/63 [EIV/63]), and A/equine/Ohio/2003 (EIV/2003), a monophyletic descendant of EIV/63 isolated 40 years after the emergence of H3N8 EIV. We show that EIV/2003 exhibits increased resistance to interferon, enhanced viral replication, and a more efficient cell-to-cell spread in cells and tissues. Transcriptomics analyses revealed virus-specific responses to each virus, mainly affecting host immunity and inflammation. Image analyses of infected equine respiratory explants showed that despite replicating at higher levels and spreading over larger areas of the respiratory epithelium, EIV/2003 induced milder lesions compared to EIV/63, suggesting that adaptation led to reduced tissue pathogenicity. Our results reveal previously unknown links between virus genotype and the host response to infection, providing new insights on the relationship between virus evolution and fitness.


Subject(s)
Adaptation, Physiological/physiology , Host-Pathogen Interactions/physiology , Influenza A Virus, H3N8 Subtype/physiology , Influenza A Virus, H3N8 Subtype/pathogenicity , Orthomyxoviridae Infections/virology , Animals , Genetic Fitness/physiology , Horses
11.
Science ; 375(6577): 161-167, 2022 Jan 14.
Article in English | MEDLINE | ID: covidwho-1648160

ABSTRACT

The COVID-19 pandemic has underscored the critical need for broad-spectrum therapeutics against respiratory viruses. Respiratory syncytial virus (RSV) is a major threat to pediatric patients and older adults. We describe 4'-fluorouridine (4'-FlU, EIDD-2749), a ribonucleoside analog that inhibits RSV, related RNA viruses, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with high selectivity index in cells and human airway epithelia organoids. Polymerase inhibition within in vitro RNA-dependent RNA polymerase assays established for RSV and SARS-CoV-2 revealed transcriptional stalling after incorporation. Once-daily oral treatment was highly efficacious at 5 milligrams per kilogram (mg/kg) in RSV-infected mice or 20 mg/kg in ferrets infected with different SARS-CoV-2 variants of concern, initiated 24 or 12 hours after infection, respectively. These properties define 4'-FlU as a broad-spectrum candidate for the treatment of RSV, SARS-CoV-2, and related RNA virus infections.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus, Human/drug effects , SARS-CoV-2/drug effects , Uracil Nucleotides/pharmacology , Administration, Oral , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/metabolism , COVID-19/virology , Cell Line , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Disease Models, Animal , Female , Ferrets , Humans , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Mononegavirales/drug effects , Mononegavirales/physiology , RNA-Dependent RNA Polymerase/metabolism , Respiratory Mucosa/virology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/physiology , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Transcription, Genetic , Uracil Nucleotides/administration & dosage , Uracil Nucleotides/metabolism , Virus Replication/drug effects
12.
J Virol ; 96(1): e0096421, 2022 01 12.
Article in English | MEDLINE | ID: covidwho-1631789

ABSTRACT

A comprehensive analysis and characterization of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection model that mimics non-severe and severe coronavirus disease 2019 (COVID-19) in humans is warranted for understating the virus and developing preventive and therapeutic agents. Here, we characterized the K18-hACE2 mouse model expressing human (h)ACE2 in mice, controlled by the human keratin 18 (K18) promoter, in the epithelia, including airway epithelial cells where SARS-CoV-2 infections typically start. We found that intranasal inoculation with higher viral doses (2 × 103 and 2 × 104 PFU) of SARS-CoV-2 caused lethality of all mice and severe damage of various organs, including lung, liver, and kidney, while lower doses (2 × 101 and 2 × 102 PFU) led to less severe tissue damage and some mice recovered from the infection. In this hACE2 mouse model, SARS-CoV-2 infection damaged multiple tissues, with a dose-dependent effect in most tissues. Similar damage was observed in postmortem samples from COVID-19 patients. Finally, the mice that recovered from infection with a low dose of virus survived rechallenge with a high dose of virus. Compared to other existing models, the K18-hACE2 model seems to be the most sensitive COVID-19 model reported to date. Our work expands the information available about this model to include analysis of multiple infectious doses and various tissues with comparison to human postmortem samples from COVID-19 patients. In conclusion, the K18-hACE2 mouse model recapitulates both severe and non-severe COVID-19 in humans being dose-dependent and can provide insight into disease progression and the efficacy of therapeutics for preventing or treating COVID-19. IMPORTANCE The pandemic of coronavirus disease 2019 (COVID-19) has reached nearly 240 million cases, caused nearly 5 million deaths worldwide as of October 2021, and has raised an urgent need for the development of novel drugs and therapeutics to prevent the spread and pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To achieve this goal, an animal model that recapitulates the features of human COVID-19 disease progress and pathogenesis is greatly needed. In this study, we have comprehensively characterized a mouse model of SARS-CoV-2 infection using K18-hACE2 transgenic mice. We infected the mice with low and high doses of SARS-CoV-2 to study the pathogenesis and survival in response to different infection patterns. Moreover, we compared the pathogenesis of the K18-hACE2 transgenic mice with that of the COVID-19 patients to show that this model could be a useful tool for the development of antiviral drugs and therapeutics.


Subject(s)
COVID-19/pathology , Disease Models, Animal , SARS-CoV-2/pathogenicity , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/immunology , COVID-19/mortality , COVID-19/virology , Humans , Immune Sera/immunology , Keratin-18/genetics , Mice , Mice, Transgenic , Promoter Regions, Genetic , Reinfection/immunology , Reinfection/mortality , Reinfection/pathology , Reinfection/virology , SARS-CoV-2/immunology , Viral Proteins/genetics , Viral Proteins/metabolism
13.
ACS Pharmacol Transl Sci ; 5(1): 8-19, 2022 Jan 14.
Article in English | MEDLINE | ID: covidwho-1621207

ABSTRACT

Drug development for specific antiviral agents against coronavirus disease 2019 (COVID-19) is still an unmet medical need as the pandemic continues to spread globally. Although huge efforts for drug repurposing and compound screens have been put forth, only a few compounds are in late-stage clinical trials. New approaches and assays are needed to accelerate COVID-19 drug discovery and development. Here, we report a time-resolved fluorescence resonance energy transfer-based assay that detects the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (NP) produced in infected cells. It uses two specific anti-NP monoclonal antibodies conjugated to donor and acceptor fluorophores that produce a robust ratiometric signal for high throughput screening of large compound collections. Using this assay, we measured a half maximal inhibitory concentration (IC50) for remdesivir of 9.3 µM against infection with SARS-CoV-2 USA/WA1/2020 (WA-1). The assay also detected SARS-CoV-2 South African (Beta, ß), Brazilian/Japanese P.1 (Gamma, γ), and Californian (Epsilon, ε) variants of concern (VoC). Therefore, this homogeneous SARS-CoV-2 NP detection assay can be used for accelerating lead compound discovery for drug development and for evaluating drug efficacy against emerging SARS-CoV-2 VoC.

14.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-296882

ABSTRACT

Accumulating evidence shows a progressive decline in the efficacy of coronavirus disease 2019 (COVID-19) mRNA vaccines such as Pfizer-BioNTech (mRNA BNT161b2) and Moderna (mRNA-1273) in preventing breakthrough infections due to diminishing humoral immunity over time. Thus, this review characterizes the kinetics of anti-SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) antibodies after the second dose of a primary cycle of COVID-19 mRNA vaccination. A systematic search of literature was performed and a total of 18 studies (N=15,980) were identified and reviewed. The percent difference of means of reported antibody titers were then calculated to determine the decline in humoral response after the peak levels post-vaccination. Findings revealed that the peak humoral response was reached at 21-28 days after the second dose, after which serum levels progressively diminished at 4-6 months post-vaccination. Additionally, results showed that regardless of age, sex, serostatus and presence of comorbidities, longitudinal data reporting antibody measurement exhibited a decline of both anti-receptor binding domain (RBD) IgG and anti-spike IgG, ranging from 94-95% at 90-180 days and 55-85% at 140-160 days, respectively, after the peak antibody response. This suggests that the rate of antibody decline may be independent of patient-related factors and peak antibody titers but mainly a function of time and antibody class/molecular target. Hence, this study highlights the necessity of more efficient vaccination strategies to provide booster administration in attenuating the effects of waning immunity, especially in the appearance of new variants of concerns (VoCs).

15.
Adv Mater ; 34(12): e2107781, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1565160

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory coronavirus 2 (SARS-CoV-2), has killed untold millions worldwide and has hurtled vaccines into the spotlight as a go-to approach to mitigate it. Advances in virology, genomics, structural biology, and vaccine technologies have enabled a rapid and unprecedented rollout of COVID-19 vaccines, although much of the developing world remains unvaccinated. Several new vaccine platforms have been developed or deployed against SARS-CoV-2, with most targeting the large viral Spike immunogen. Those that safely induce strong and durable antibody responses at low dosages are advantageous, as well are those that can be rapidly produced at a large scale. Virtually all COVID-19 vaccines and adjuvants possess nanoscale or microscale dimensions and represent diverse and unique biomaterials. Viral vector vaccine platforms, lipid nanoparticle mRNA vaccines and multimeric display technologies for subunit vaccines have received much attention. Nanoscale vaccine adjuvants have also been used in combination with other vaccines. To deal with the ongoing pandemic, and to be ready for potential future ones, advanced vaccine technologies will continue to be developed in the near future. Herein, the recent use of advanced materials used for developing COVID-19 vaccines is summarized.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Liposomes , Nanoparticles , SARS-CoV-2
16.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-295625

ABSTRACT

ABSTRACT With the advent of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic, several vaccines have been developed to mitigate its spread and prevent adverse consequences of the Coronavirus Disease 2019 (COVID-19). The mRNA technology is an unprecedented vaccine, usually given in two doses to prevent SARS-CoV-2 infections. Despite effectiveness and safety, inter-individual immune response heterogeneity has been observed in recipients of mRNA-based vaccines. As a novel disease, the specific immune response mechanism responsible for warding off COVID-19 remains unclear at this point. However, significant evidence suggests that humoral response plays a crucial role in affording immunoprotection and preventing debilitating sequelae from COVID-19. As such this paper focused on the possible effects of age, sex, serostatus, and comorbidities on humoral response ( i . e ., total antibodies, IgG and/or IgA) of different populations post-mRNA-based Pfizer-BioNTech vaccination. A systematic search of literature was performed through PubMed, Cochrane CENTRAL, and Google Scholar. Studies were included if they reported humoral response to COVID-19 mRNA vaccines. A total of 32 studies was identified and reviewed, and the percent difference of means of reported antibody levels were calculated for comparison. Findings revealed that older individuals, the male sex, seronegativity, and those with more comorbidities mounted less humoral immune response. Given these findings, several recommendations were proposed regarding the current vaccination practices. These include giving additional doses of vaccination for immunocompromised and elderly populations. Another recommendation is conducting clinical trials in giving a combined scheme of mRNA vaccines, protein vaccines, and vector-based vaccines.

17.
Sci Adv ; 7(49): eabj1476, 2021 Dec 03.
Article in English | MEDLINE | ID: covidwho-1546429

ABSTRACT

The COVID-19 pandemic has spurred interest in potent and thermostable SARS-CoV-2 vaccines. Here, we assess low-dose immunization with lyophilized nanoparticles decorated with recombinant SARS-CoV-2 antigens. The SARS-CoV-2 Spike glycoprotein or its receptor-binding domain (RBD; mouse vaccine dose, 0.1 µg) was displayed on liposomes incorporating a particle-inducing lipid, cobalt porphyrin-phospholipid (dose, 0.4 µg), along with monophosphoryl lipid A (dose, 0.16 µg) and QS-21 (dose, 0.16 µg). Following optimization of lyophilization conditions, Spike or RBD-decorated liposomes were effectively reconstituted and maintained conformational capacity for binding human angiotensin-converting enzyme 2 (hACE2) for at least a week when stored at 60°C in lyophilized but not liquid format. Prime-boost intramuscular vaccination of hACE2-transgenic mice with the reconstituted vaccine formulations induced effective antibody responses that inhibited RBD binding to hACE2 and neutralized pseudotyped and live SARS-CoV-2. Two days following viral challenge, immunized transgenic mice cleared the virus and were fully protected from lethal disease.

18.
J Vis Exp ; (177)2021 11 05.
Article in English | MEDLINE | ID: covidwho-1528915

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has been caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To date, SARS-CoV-2 has been responsible for over 242 million infections and more than 4.9 million deaths worldwide. Similar to other viruses, studying SARS-CoV-2 requires the use of experimental methods to detect the presence of virus in infected cells and/or in animal models. To overcome this limitation, we generated replication-competent recombinant (r)SARS-CoV-2 that expresses bioluminescent (nanoluciferase, Nluc) or fluorescent (Venus) proteins. These reporter-expressing rSARS-CoV-2 allow tracking viral infections in vitro and in vivo based on the expression of Nluc and Venus reporter genes. Here the study describes the use of rSARS-CoV-2/Nluc and rSARS-CoV-2/Venus to detect and track SARS-CoV-2 infection in the previously described K18 human angiotensin-converting enzyme 2 (hACE2) transgenic mouse model of infection using in vivo imaging systems (IVIS). This rSARS-CoV-2/Nluc and rSARS-CoV-2/Venus show rSARS-CoV-2/WT-like pathogenicity and viral replication in vivo. Importantly, Nluc and Venus expression allow us to directly track viral infections in vivo and ex vivo, in infected mice. These rSARS-CoV-2/Nluc and rSARS-CoV-2/Venus represent an excellent option to study the biology of SARS-CoV-2 in vivo, to understand viral infection and associated COVID-19 disease, and to identify effective prophylactic and/or therapeutic treatments to combat SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19 , Keratin-18/genetics , Virus Diseases , Animals , Humans , Mice , Mice, Transgenic , SARS-CoV-2
19.
Nat Commun ; 12(1): 6415, 2021 11 05.
Article in English | MEDLINE | ID: covidwho-1503781

ABSTRACT

Remdesivir is an antiviral approved for COVID-19 treatment, but its wider use is limited by intravenous delivery. An orally bioavailable remdesivir analog may boost therapeutic benefit by facilitating early administration to non-hospitalized patients. This study characterizes the anti-SARS-CoV-2 efficacy of GS-621763, an oral prodrug of remdesivir parent nucleoside GS-441524. Both GS-621763 and GS-441524 inhibit SARS-CoV-2, including variants of concern (VOC) in cell culture and human airway epithelium organoids. Oral GS-621763 is efficiently converted to plasma metabolite GS-441524, and in lungs to the triphosphate metabolite identical to that generated by remdesivir, demonstrating a consistent mechanism of activity. Twice-daily oral administration of 10 mg/kg GS-621763 reduces SARS-CoV-2 burden to near-undetectable levels in ferrets. When dosed therapeutically against VOC P.1 gamma γ, oral GS-621763 blocks virus replication and prevents transmission to untreated contact animals. These results demonstrate therapeutic efficacy of a much-needed orally bioavailable analog of remdesivir in a relevant animal model of SARS-CoV-2 infection.


Subject(s)
Adenosine/analogs & derivatives , Antiviral Agents/pharmacology , COVID-19/drug therapy , Prodrugs/pharmacology , SARS-CoV-2/drug effects , Adenosine/pharmacology , Animals , COVID-19/metabolism , COVID-19/virology , Cell Line , Chlorocebus aethiops , Cricetinae , Disease Models, Animal , Female , Ferrets , Humans , SARS-CoV-2/isolation & purification
20.
J Virol ; 95(20): e0059221, 2021 09 27.
Article in English | MEDLINE | ID: covidwho-1440799

ABSTRACT

The current pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to dramatic economic and health burdens. Although the worldwide SARS-CoV-2 vaccination campaign has begun, exploration of other vaccine candidates is needed due to uncertainties with the current approved vaccines, such as durability of protection, cross-protection against variant strains, and costs of long-term production and storage. In this study, we developed a methyltransferase-defective recombinant vesicular stomatitis virus (mtdVSV)-based SARS-CoV-2 vaccine candidate. We generated mtdVSVs expressing SARS-CoV-2 full-length spike (S) protein, S1, or its receptor-binding domain (RBD). All of these recombinant viruses grew to high titers in mammalian cells despite high attenuation in cell culture. The SARS-CoV-2 S protein and its truncations were highly expressed by the mtdVSV vector. These mtdVSV-based vaccine candidates were completely attenuated in both immunocompetent and immunocompromised mice. Among these constructs, mtdVSV-S induced high levels of SARS-CoV-2-specific neutralizing antibodies (NAbs) and Th1-biased T-cell immune responses in mice. In Syrian golden hamsters, the serum levels of SARS-CoV-2-specific NAbs triggered by mtdVSV-S were higher than the levels of NAbs in convalescent plasma from recovered COVID-19 patients. In addition, hamsters immunized with mtdVSV-S were completely protected against SARS-CoV-2 replication in lung and nasal turbinate tissues, cytokine storm, and lung pathology. Collectively, our data demonstrate that mtdVSV expressing SARS-CoV-2 S protein is a safe and highly efficacious vaccine candidate against SARS-CoV-2 infection. IMPORTANCE Viral mRNA cap methyltransferase (MTase) is essential for mRNA stability, protein translation, and innate immune evasion. Thus, viral mRNA cap MTase activity is an excellent target for development of live attenuated or live vectored vaccine candidates. Here, we developed a panel of MTase-defective recombinant vesicular stomatitis virus (mtdVSV)-based SARS-CoV-2 vaccine candidates expressing full-length S, S1, or several versions of the RBD. These mtdVSV-based vaccine candidates grew to high titers in cell culture and were completely attenuated in both immunocompetent and immunocompromised mice. Among these vaccine candidates, mtdVSV-S induces high levels of SARS-CoV-2-specific neutralizing antibodies (Nabs) and Th1-biased immune responses in mice. Syrian golden hamsters immunized with mtdVSV-S triggered SARS-CoV-2-specific NAbs at higher levels than those in convalescent plasma from recovered COVID-19 patients. Furthermore, hamsters immunized with mtdVSV-S were completely protected against SARS-CoV-2 challenge. Thus, mtdVSV is a safe and highly effective vector to deliver SARS-CoV-2 vaccine.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Vesicular stomatitis Indiana virus/genetics , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Brain/virology , COVID-19/immunology , Cell Line , Cytokine Release Syndrome/prevention & control , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Humans , Immunogenicity, Vaccine , Lung/immunology , Lung/pathology , Lung/virology , Mesocricetus , Methyltransferases/genetics , Methyltransferases/metabolism , Mice , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Th1 Cells/immunology , Vaccines, Synthetic/immunology , Vesicular stomatitis Indiana virus/enzymology , Vesicular stomatitis Indiana virus/physiology , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL