Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Nutrients ; 12(6)2020 Jun 08.
Article in English | MEDLINE | ID: covidwho-1725884


The severe acute respiratory syndrome coronavirus 2 (Sars-CoV-2) global pandemic is a devastating event that is causing thousands of victims every day around the world. One of the main reasons of the great impact of coronavirus disease 2019 (COVID-19) on society is its unexpected spread, which has not allowed an adequate preparation. The scientific community is fighting against time for the production of a vaccine, but it is difficult to place a safe and effective product on the market as fast as the virus is spreading. Similarly, for drugs that can directly interfere with viral pathways, their production times are long, despite the great efforts made. For these reasons, we analyzed the possible role of non-pharmacological substances such as supplements, probiotics, and nutraceuticals in reducing the risk of Sars-CoV-2 infection or mitigating the symptoms of COVID-19. These substances could have numerous advantages in the current circumstances, are generally easily available, and have negligible side effects if administered at the already used and tested dosages. Large scientific evidence supports the benefits that some bacterial and molecular products may exert on the immune response to respiratory viruses. These could also have a regulatory role in systemic inflammation or endothelial damage, which are two crucial aspects of COVID-19. However, there are no specific data available, and rigorous clinical trials should be conducted to confirm the putative benefits of diet supplementation, probiotics, and nutraceuticals in the current pandemic.

Coronavirus Infections/diet therapy , Coronavirus Infections/prevention & control , Diet , Dietary Supplements , Pandemics/prevention & control , Pneumonia, Viral/diet therapy , Pneumonia, Viral/prevention & control , Probiotics/therapeutic use , Ascorbic Acid/therapeutic use , Betacoronavirus , COVID-19 , Humans , SARS-CoV-2 , Vitamin D/therapeutic use
J Thromb Thrombolysis ; 52(1): 105-110, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1002136


Patients with Coronavirus-associated disease-2019 (COVID-19) display alterations of the hemostatic system and the presence of a prothrombotic status frequently leading to vascular complications. However, the impact of COVID-19 on platelet activity, aggregation and agglutination still needs to be clarified. We measured total levels of von Willebrand factor (vWF) and vWF binding to the platelet glycoprotein (Gp) complex (GPIb-IX-V), in a cohort of COVID-19 patients admitted to the intensive care unit of our Institution. Moreover, we evaluated platelet aggregation in response to agonists (ADP, collagen, arachidonic acid) and platelet agglutination in response to ristocetin. We found that levels of vWF antigen and the active form of vWF binding to platelets (vWF:RCo), were markedly increased in these patients. These results were associated with higher agglutination rates induced by ristocetin, thereby indirectly indicating an increased capability of vWF to bind to platelets. Conversely, we found that platelet aggregation in response to both ADP and collagen was lower in COVID-19 patients compared to healthy volunteers. This study shows that COVID-19 is associated with increased vWF-induced platelet agglutination but reduced platelet responsivity to aggregation stimuli. Our findings have translational relevance since platelet adhesion to vWF may represent a marker to predict possible complications and better delineate therapeutic strategies in COVID-19 patients.

Blood Platelets/metabolism , COVID-19/blood , Platelet Aggregation , von Willebrand Factor/metabolism , Adult , Aged , Aged, 80 and over , Agglutination , Blood Platelets/virology , COVID-19/diagnosis , COVID-19/virology , Female , Host-Pathogen Interactions , Humans , Male , Middle Aged , Platelet Function Tests , Protein Binding , SARS-CoV-2/pathogenicity , Thrombosis/blood , Thrombosis/diagnosis , Thrombosis/virology