Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Clin Pharmacol Ther ; 2022 May 14.
Article in English | MEDLINE | ID: covidwho-1843877

ABSTRACT

The coronavirus disease 2019 (COVID-19) antiviral nirmatrelvir/ritonavir (Paxlovid) has been granted authorization or approval in several countries for the treatment of patients with mild to moderate COVID-19 at high risk of progression to severe disease and with no requirement for supplemental oxygen. Nirmatrelvir/ritonavir will be primarily administered outside the hospital setting as a 5-day course oral treatment. The ritonavir component boosts plasma concentrations of nirmatrelvir through the potent and rapid inhibition of the key drug-metabolizing enzyme cytochrome P450 (CYP) 3A4. Thus nirmatrelvir/ritonavir, even given as a short treatment course, has a high potential to cause harm from drug-drug interactions (DDIs) with other drugs metabolized through this pathway. Options for mitigating risk from DDIs with nirmatrelvir/ritonavir are limited due to the clinical illness, the short window for intervention, and the related difficulty of implementing clinical monitoring or dosage adjustment of the comedication. Pragmatic options are largely confined to preemptive or symptom-driven pausing of the comedication or managing any additional risk through counseling. This review summarizes the effects of ritonavir on drug disposition (i.e., metabolizing enzymes and transporters) and discusses factors determining the likelihood of having a clinically significant DDI. Furthermore, it provides a comprehensive list of comedications likely to be used in COVID-19 patients which are categorized according to their potential DDI risk with nirmatrelvir/ritonavir. It also discusses recommendations for the management of DDIs which balance the risk of harm from DDIs with a short course of ritonavir, against unnecessary denial of nirmatrelvir/ritonavir treatment.

2.
HIV Med ; 2022 Mar 25.
Article in English | MEDLINE | ID: covidwho-1764940

ABSTRACT

BACKGROUND: The European AIDS Clinical Society (EACS) Guidelines were revised in 2021 for the 17th time with updates on all aspects of HIV care. KEY POINTS OF THE GUIDELINES UPDATE: Version 11.0 of the Guidelines recommend six first-line treatment options for antiretroviral treatment (ART)-naïve adults: tenofovir-based backbone plus an unboosted integrase inhibitor or plus doravirine; abacavir/lamivudine plus dolutegravir; or dual therapy with lamivudine or emtricitabine plus dolutegravir. Recommendations on preferred and alternative first-line combinations from birth to adolescence were included in the new paediatric section made with Penta. Long-acting cabotegravir plus rilpivirine was included as a switch option and, along with fostemsavir, was added to all drug-drug interaction (DDI) tables. Four new DDI tables for anti-tuberculosis drugs, anxiolytics, hormone replacement therapy and COVID-19 therapies were introduced, as well as guidance on screening and management of anxiety disorders, transgender health, sexual health for women and menopause. The sections on frailty, obesity and cancer were expanded, and recommendations for the management of people with diabetes and cardiovascular disease risk were revised extensively. Treatment of recently acquired hepatitis C is recommended with ongoing risk behaviour to reduce transmission. Bulevirtide was included as a treatment option for the hepatitis Delta virus. Drug-resistant tuberculosis guidance was adjusted in accordance with the 2020 World Health Organization recommendations. Finally, there is new guidance on COVID-19 management with a focus on continuance of HIV care. CONCLUSIONS: In 2021, the EACS Guidelines were updated extensively and broadened to include new sections. The recommendations are available as a free app, in interactive web format and as an online pdf.

5.
Lancet Glob Health ; 10(3): e331, 2022 03.
Article in English | MEDLINE | ID: covidwho-1683796
6.
J Antimicrob Chemother ; 77(3): 568-573, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1522230

ABSTRACT

Global use of dexamethasone in COVID-19 patients has revealed a poor understanding of the drug-drug interaction (DDI) potential of dexamethasone, particularly with antiretroviral agents (ARVs). Dexamethasone is both a substrate and a dose-dependent inducer of cytochrome P450 3A4 (CYP3A4). As many ARVs are substrates and/or inhibitors or inducers of CYP3A4, there is concern about DDIs with dexamethasone either as a perpetrator or a victim. Assessment of DDIs that involve dexamethasone is complex as dexamethasone is used at a range of daily doses (generally 0.5 up to 40 mg) and a treatment course can be short, long, or intermittent. Moreover, DDIs with dexamethasone have been evaluated only for a limited number of drugs. Here, we summarize the available in vitro and in vivo data on the interaction potential of dexamethasone and provide recommendations for the management of DDIs with ARVs, considering various dexamethasone dosages and treatment durations.


Subject(s)
COVID-19 , HIV Infections , Pharmaceutical Preparations , COVID-19/drug therapy , Cytochrome P-450 CYP3A , Dexamethasone , Drug Interactions , HIV Infections/drug therapy , Humans , SARS-CoV-2
7.
Clin Pharmacol Ther ; 111(3): 579-584, 2022 03.
Article in English | MEDLINE | ID: covidwho-1396859

ABSTRACT

Patients with coronavirus disease 2019 (COVID-19) may experience a cytokine storm with elevated interleukin-6 (IL-6) levels in response to severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). IL-6 suppresses hepatic enzymes, including CYP3A; however, the effect on drug exposure and drug-drug interaction magnitudes of the cytokine storm and resulting elevated IL-6 levels have not been characterized in patients with COVID-19. We used physiologically-based pharmacokinetic (PBPK) modeling to simulate the effect of inflammation on the pharmacokinetics of CYP3A metabolized drugs. A PBPK model was developed for lopinavir boosted with ritonavir (LPV/r), using clinically observed data from people living with HIV (PLWH). The inhibition of CYPs by IL-6 was implemented by a semimechanistic suppression model and verified against clinical data from patients with COVID-19, treated with LPV/r. Subsequently, the verified model was used to simulate the effect of various clinically observed IL-6 levels on the exposure of LPV/r and midazolam, a CYP3A model drug. Clinically observed LPV/r concentrations in PLWH and patients with COVID-19 were predicted within the 95% confidence interval of the simulation results, demonstrating its predictive capability. Simulations indicated a twofold higher LPV exposure in patients with COVID-19 compared with PLWH, whereas ritonavir exposure was predicted to be comparable. Varying IL-6 levels under COVID-19 had only a marginal effect on LPV/r pharmacokinetics according to our model. Simulations showed that a cytokine storm increased the exposure of the CYP3A paradigm substrate midazolam by 40%. Our simulations suggest that CYP3A metabolism is altered in patients with COVID-19 having increased cytokine release. Caution is required when prescribing narrow therapeutic index drugs particularly in the presence of strong CYP3A inhibitors.


Subject(s)
COVID-19/complications , Cytochrome P-450 CYP3A/metabolism , Cytokine Release Syndrome/virology , Lopinavir/pharmacokinetics , Midazolam/pharmacokinetics , Ritonavir/pharmacokinetics , Adult , COVID-19/drug therapy , COVID-19/metabolism , Cytochrome P-450 CYP3A/pharmacokinetics , Cytochrome P-450 CYP3A Inhibitors/pharmacokinetics , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/metabolism , Cytokines/metabolism , Humans , Metabolic Clearance Rate/drug effects , Middle Aged , Models, Biological
8.
Glob Cardiol Sci Pract ; 2021(2): e202111, 2021 Jun 30.
Article in English | MEDLINE | ID: covidwho-1289365

ABSTRACT

In this article we summarize the cardiovascular adverse events that were observed in three patients during their treatment for COVID-19 and discuss their association with lopinavir/ ritonavir (LPV/r) and hydroxychloroquine (HCQ). The cases were reported to our regional pharmacovigilance centre in April 2020. All three patients were above 75 years in age, male and multimorbid, and had been hospitalized for treatment of COVID-19. As part of their treatment, all of them received a very strictly monitored off-label therapy with LPV/r and HCQ, for which they had given their prior, written, informed consent. In one patient, erythromycin was also administered. All three patients developed a significant QTc time prolongation during or shortly after therapy with the above drugs. On account of this, the treatment had to be discontinued early in each case and QTc time recovered in all three patients.

9.
Microorganisms ; 9(5)2021 May 19.
Article in English | MEDLINE | ID: covidwho-1234778

ABSTRACT

A variety of antiviral treatments for COVID-19 have been investigated, involving many repurposed drugs. Currently, the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp, encoded by nsp12-nsp7-nsp8) has been targeted by numerous inhibitors, e.g., remdesivir, the only provisionally approved treatment to-date, although the clinical impact of these interventions remains inconclusive. However, the potential emergence of antiviral resistance poses a threat to the efficacy of any successful therapies on a wide scale. Here, we propose a framework to monitor the emergence of antiviral resistance, and as a proof of concept, we address the interaction between RdRp and remdesivir. We show that SARS-CoV-2 RdRp is under purifying selection, that potential escape mutations are rare in circulating lineages, and that those mutations, where present, do not destabilise RdRp. In more than 56,000 viral genomes from 105 countries from the first pandemic wave, we found negative selective pressure affecting nsp12 (Tajima's D = -2.62), with potential antiviral escape mutations in only 0.3% of sequenced genomes. Potential escape mutations included known key residues, such as Nsp12:Val473 and Nsp12:Arg555. Of the potential escape mutations involved globally, in silico structural models found that they were unlikely to be associated with loss of stability in RdRp. No potential escape mutation was found in a local cohort of remdesivir treated patients. Collectively, these findings indicate that RdRp is a suitable drug target, and that remdesivir does not seem to exert high selective pressure. We anticipate our framework to be the starting point of a larger effort for a global monitoring of drug resistance throughout the COVID-19 pandemic.

11.
Drugs R D ; 21(1): 9-27, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-986820

ABSTRACT

INTRODUCTION: In December 2019, an outbreak of a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began, resulting in a number of antivirals and immune modulators being repurposed to treat the associated coronavirus disease 2019 (COVID-19). Many patients requiring treatment for COVID-19 may have either pre-existing renal or hepatic disease or experience acute renal/hepatic injury as a result of the acute infection. Altered renal or hepatic function can significantly affect drug concentrations of medications due to impaired drug metabolism and excretion, resulting in toxicity or reduced efficacy. The aim of this paper is to review the pharmacokinetics and available study data for the experimental COVID-19 therapies in patients with any degree of renal or hepatic impairment to make recommendations for dosing. METHODS: COVID-19 agents included in these recommendations were listed as primaries on the University of Liverpool COVID-19 drug interaction website ( www.covid19-druginteractions.org ), initially identified from Clinicialtrials.gov and ChicCTR.org.cn. A literature search was performed using PubMed and EMBASE as well as product licences and pharmacokinetic databases. FINDINGS: Remdesivir, dexamethasone, azithromycin, favipiravir, lopinavir/ritonavir, atazanavir, hydroxychloroquine, interferon beta, ribavirin, tocilizumab, anakinra and sarilumab were identified as experimental drugs being used in COVID-19 trials as of November 2020. Limited study data was found for these drugs in patients with renal or hepatic impairment for COVID-19 or other indications. Recommendations were made based on available data, consideration of pharmacokinetic properties (including variability), the dosing and anticipated treatment duration of each regimen in COVID-19 and known toxicities. CONCLUSION: Dosing of drugs used to treat COVID-19 in patients with renal or hepatic impairment is complex. These recommendations were produced to provide guidance to clinicians worldwide who are treating patients with COVID-19, many of whom will have some degree of acute or chronic renal or hepatic impairment.


Subject(s)
Antiviral Agents/administration & dosage , COVID-19/drug therapy , Drug Repositioning/methods , Kidney Diseases/drug therapy , Liver Diseases/drug therapy , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/analogs & derivatives , Alanine/administration & dosage , Alanine/analogs & derivatives , COVID-19/diagnosis , COVID-19/epidemiology , Clinical Trials as Topic/methods , Dexamethasone/administration & dosage , Dose-Response Relationship, Drug , Humans , Hydroxychloroquine/administration & dosage , Kidney Diseases/diagnosis , Kidney Diseases/epidemiology , Liver Diseases/diagnosis , Liver Diseases/epidemiology
13.
J Antimicrob Chemother ; 75(12): 3417-3424, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-694125

ABSTRACT

As global health services respond to the coronavirus pandemic, many prescribers are turning to experimental drugs. This review aims to assess the risk of drug-drug interactions in the severely ill COVID-19 patient. Experimental therapies were identified by searching ClinicalTrials.gov for 'COVID-19', '2019-nCoV', '2019 novel coronavirus' and 'SARS-CoV-2'. The last search was performed on 30 June 2020. Herbal medicines, blood-derived products and in vitro studies were excluded. We identified comorbidities by searching PubMed for the MeSH terms 'COVID-19', 'Comorbidity' and 'Epidemiological Factors'. Potential drug-drug interactions were evaluated according to known pharmacokinetics, overlapping toxicities and QT risk. Drug-drug interactions were graded GREEN and YELLOW: no clinically significant interaction; AMBER: caution; RED: serious risk. A total of 2378 records were retrieved from ClinicalTrials.gov, which yielded 249 drugs that met inclusion criteria. Thirteen primary compounds were screened against 512 comedications. A full database of these interactions is available at www.covid19-druginteractions.org. Experimental therapies for COVID-19 present a risk of drug-drug interactions, with lopinavir/ritonavir (10% RED, 41% AMBER; mainly a perpetrator of pharmacokinetic interactions but also risk of QT prolongation particularly when given with concomitant drugs that can prolong QT), chloroquine and hydroxychloroquine (both 7% RED and 27% AMBER, victims of some interactions due to metabolic profile but also perpetrators of QT prolongation) posing the greatest risk. With management, these risks can be mitigated. We have published a drug-drug interaction resource to facilitate medication review for the critically ill patient.


Subject(s)
Antiviral Agents/pharmacokinetics , Antiviral Agents/therapeutic use , Betacoronavirus , Coronavirus Infections/drug therapy , Drug Interactions , Pneumonia, Viral/drug therapy , Therapies, Investigational/adverse effects , Antiviral Agents/adverse effects , COVID-19 , Humans , Pandemics , SARS-CoV-2
14.
Antimicrob Agents Chemother ; 64(9)2020 08 20.
Article in English | MEDLINE | ID: covidwho-639066

ABSTRACT

Coronavirus disease 2019 (COVID-19) leads to inflammatory cytokine release, which can downregulate the expression of metabolizing enzymes. This cascade affects drug concentrations in the plasma. We investigated the association between lopinavir (LPV) and hydroxychloroquine (HCQ) plasma concentrations and the levels of the acute-phase inflammation marker C-reactive protein (CRP). LPV plasma concentrations in 92 patients hospitalized at our institution were prospectively collected. Lopinavir-ritonavir was administered every 12 hours, 800/200 mg on day 1 and 400/100 mg on day 2 until day 5 or 7. HCQ was given at 800 mg, followed by 400 mg after 6, 24, and 48 h. Hematological, liver, kidney, and inflammation laboratory values were analyzed on the day of drug level determination. The median age of study participants was 59 (range, 24 to 85) years, and 71% were male. The median durations from symptom onset to hospitalization and treatment initiation were 7 days (interquartile range [IQR], 4 to 10) and 8 days (IQR, 5 to 10), respectively. The median LPV trough concentration on day 3 of treatment was 26.5 µg/ml (IQR, 18.9 to 31.5). LPV plasma concentrations positively correlated with CRP values (r = 0.37, P < 0.001) and were significantly lower when tocilizumab was preadministered. No correlation was found between HCQ concentrations and CRP values. High LPV plasma concentrations were observed in COVID-19 patients. The ratio of calculated unbound drug fraction to published SARS-CoV-2 50% effective concentrations (EC50) indicated insufficient LPV concentrations in the lung. CRP values significantly correlated with LPV but not HCQ plasma concentrations, implying inhibition of cytochrome P450 3A4 (CYP3A4) metabolism by inflammation.


Subject(s)
Antiviral Agents/pharmacokinetics , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Cytokine Release Syndrome/drug therapy , Hydroxychloroquine/pharmacokinetics , Lopinavir/pharmacokinetics , Pneumonia, Viral/drug therapy , Ritonavir/pharmacokinetics , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized/therapeutic use , Antiviral Agents/blood , Antiviral Agents/pharmacology , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , Biomarkers/blood , C-Reactive Protein/metabolism , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/mortality , Coronavirus Infections/virology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/mortality , Cytokine Release Syndrome/virology , Drug Administration Schedule , Drug Combinations , Female , Hospitals, University , Humans , Hydroxychloroquine/blood , Hydroxychloroquine/pharmacology , Length of Stay/statistics & numerical data , Lopinavir/blood , Lopinavir/pharmacology , Male , Middle Aged , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Retrospective Studies , Ritonavir/blood , Ritonavir/pharmacology , SARS-CoV-2 , Severity of Illness Index , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL