Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Advanced Sciences and Technologies for Security Applications ; : 147-157, 2022.
Article in English | Scopus | ID: covidwho-2048001
American Journal of Respiratory and Critical Care Medicine ; 205:1, 2022.
Article in English | English Web of Science | ID: covidwho-1880266
Pakistan Journal of Medical and Health Sciences ; 16(4):509-513, 2022.
Article in English | EMBASE | ID: covidwho-1870361
European Psychiatry ; 64(S1):S655-S656, 2021.
Article in English | ProQuest Central | ID: covidwho-1357343
Mayo Clin Proc Innov Qual Outcomes ; 5(1): 161-170, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1057031


The coronavirus disease 2019 (COVID-19) pandemic has strained health care systems and personal protective equipment (PPE) supplies globally. We hypothesized that a collaborative robot system could perform health care worker effector tasks inside a simulated intensive care unit (ICU) patient room, which could theoretically reduce both PPE use and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposures. We planned a prospective proof-of-concept feasibility and design pilot study to test 5 discrete medical tasks in a simulated ICU room of a COVID-19 patient using a collaborative robot: push a button on intravenous pole machine when alert occurs for downstream occlusion, adjust ventilator knob, push button on ICU monitor to silence false alerts, increase oxygen flow on wall-mounted flow meter to allow the patient to walk to the bathroom and back (dial-up and dial-down oxygen flow), and push wall-mounted nurse call button. Feasibility was defined as task completion robotically. A training period of 45 minutes to 1 hour was needed to program the system de novo for each task. In less than 30 days, the team completed 5 simple effector task experiments robotically. Selected collaborative robotic effector tasks appear feasible in a simulated ICU room of the COVID-19 patient. Theoretically, this robotic approach could reduce PPE use and staff SARS-CoV-2 exposure. It requires future validation and health care worker learning similar to other ICU device training.