Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
PLoS One ; 16(3): e0248128, 2021.
Article in English | MEDLINE | ID: covidwho-1575679

ABSTRACT

BACKGROUND: The COVID-19 pandemic remains a significant global threat. However, despite urgent need, there remains uncertainty surrounding best practices for pharmaceutical interventions to treat COVID-19. In particular, conflicting evidence has emerged surrounding the use of hydroxychloroquine and azithromycin, alone or in combination, for COVID-19. The COVID-19 Evidence Accelerator convened by the Reagan-Udall Foundation for the FDA, in collaboration with Friends of Cancer Research, assembled experts from the health systems research, regulatory science, data science, and epidemiology to participate in a large parallel analysis of different data sets to further explore the effectiveness of these treatments. METHODS: Electronic health record (EHR) and claims data were extracted from seven separate databases. Parallel analyses were undertaken on data extracted from each source. Each analysis examined time to mortality in hospitalized patients treated with hydroxychloroquine, azithromycin, and the two in combination as compared to patients not treated with either drug. Cox proportional hazards models were used, and propensity score methods were undertaken to adjust for confounding. Frequencies of adverse events in each treatment group were also examined. RESULTS: Neither hydroxychloroquine nor azithromycin, alone or in combination, were significantly associated with time to mortality among hospitalized COVID-19 patients. No treatment groups appeared to have an elevated risk of adverse events. CONCLUSION: Administration of hydroxychloroquine, azithromycin, and their combination appeared to have no effect on time to mortality in hospitalized COVID-19 patients. Continued research is needed to clarify best practices surrounding treatment of COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , Azithromycin/therapeutic use , COVID-19/drug therapy , Hydroxychloroquine/therapeutic use , Pandemics/prevention & control , Data Management/methods , Drug Therapy, Combination/methods , Female , Hospitalization , Humans , Male , SARS-CoV-2/drug effects
2.
JMIR Public Health Surveill ; 6(4): e22400, 2020 10 22.
Article in English | MEDLINE | ID: covidwho-1172949

ABSTRACT

BACKGROUND: Racial disparities in health care are well documented in the United States. As machine learning methods become more common in health care settings, it is important to ensure that these methods do not contribute to racial disparities through biased predictions or differential accuracy across racial groups. OBJECTIVE: The goal of the research was to assess a machine learning algorithm intentionally developed to minimize bias in in-hospital mortality predictions between white and nonwhite patient groups. METHODS: Bias was minimized through preprocessing of algorithm training data. We performed a retrospective analysis of electronic health record data from patients admitted to the intensive care unit (ICU) at a large academic health center between 2001 and 2012, drawing data from the Medical Information Mart for Intensive Care-III database. Patients were included if they had at least 10 hours of available measurements after ICU admission, had at least one of every measurement used for model prediction, and had recorded race/ethnicity data. Bias was assessed through the equal opportunity difference. Model performance in terms of bias and accuracy was compared with the Modified Early Warning Score (MEWS), the Simplified Acute Physiology Score II (SAPS II), and the Acute Physiologic Assessment and Chronic Health Evaluation (APACHE). RESULTS: The machine learning algorithm was found to be more accurate than all comparators, with a higher sensitivity, specificity, and area under the receiver operating characteristic. The machine learning algorithm was found to be unbiased (equal opportunity difference 0.016, P=.20). APACHE was also found to be unbiased (equal opportunity difference 0.019, P=.11), while SAPS II and MEWS were found to have significant bias (equal opportunity difference 0.038, P=.006 and equal opportunity difference 0.074, P<.001, respectively). CONCLUSIONS: This study indicates there may be significant racial bias in commonly used severity scoring systems and that machine learning algorithms may reduce bias while improving on the accuracy of these methods.


Subject(s)
Forecasting/methods , Hospital Mortality , Machine Learning/standards , APACHE , Adult , Aged , Algorithms , Cohort Studies , Early Warning Score , Electronic Health Records/statistics & numerical data , Female , Humans , Machine Learning/statistics & numerical data , Male , Middle Aged , Retrospective Studies , Simplified Acute Physiology Score
4.
J Clin Med ; 9(12)2020 Nov 26.
Article in English | MEDLINE | ID: covidwho-945860

ABSTRACT

Therapeutic agents for the novel coronavirus disease 2019 (COVID-19) have been proposed, but evidence supporting their use is limited. A machine learning algorithm was developed in order to identify a subpopulation of COVID-19 patients for whom hydroxychloroquine was associated with improved survival; this population might be relevant for study in a clinical trial. A pragmatic trial was conducted at six United States hospitals. We enrolled COVID-19 patients that were admitted between 10 March and 4 June 2020. Treatment was not randomized. The study endpoint was mortality; discharge was a competing event. Hazard ratios were obtained on the entire population, and on the subpopulation indicated by the algorithm as suitable for treatment. A total of 290 patients were enrolled. In the subpopulation that was identified by the algorithm, hydroxychloroquine was associated with a statistically significant (p = 0.011) increase in survival (adjusted hazard ratio 0.29, 95% confidence interval (CI) 0.11-0.75). Adjusted survival among the algorithm indicated patients was 82.6% in the treated arm and 51.2% in the arm not treated. No association between treatment and mortality was observed in the general population. A 31% increase in survival at the end of the study was observed in a population of COVID-19 patients that were identified by a machine learning algorithm as having a better outcome with hydroxychloroquine treatment. Precision medicine approaches may be useful in identifying a subpopulation of COVID-19 patients more likely to be proven to benefit from hydroxychloroquine treatment in a clinical trial.

5.
Ann Med Surg (Lond) ; 59: 207-216, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-813448

ABSTRACT

RATIONALE: Prediction of patients at risk for mortality can help triage patients and assist in resource allocation. OBJECTIVES: Develop and evaluate a machine learning-based algorithm which accurately predicts mortality in COVID-19, pneumonia, and mechanically ventilated patients. METHODS: Retrospective study of 53,001 total ICU patients, including 9166 patients with pneumonia and 25,895 mechanically ventilated patients, performed on the MIMIC dataset. An additional retrospective analysis was performed on a community hospital dataset containing 114 patients positive for SARS-COV-2 by PCR test. The outcome of interest was in-hospital patient mortality. RESULTS: When trained and tested on the MIMIC dataset, the XGBoost predictor obtained area under the receiver operating characteristic (AUROC) values of 0.82, 0.81, 0.77, and 0.75 for mortality prediction on mechanically ventilated patients at 12-, 24-, 48-, and 72- hour windows, respectively, and AUROCs of 0.87, 0.78, 0.77, and 0.734 for mortality prediction on pneumonia patients at 12-, 24-, 48-, and 72- hour windows, respectively. The predictor outperformed the qSOFA, MEWS and CURB-65 risk scores at all prediction windows. When tested on the community hospital dataset, the predictor obtained AUROCs of 0.91, 0.90, 0.86, and 0.87 for mortality prediction on COVID-19 patients at 12-, 24-, 48-, and 72- hour windows, respectively, outperforming the qSOFA, MEWS and CURB-65 risk scores at all prediction windows. CONCLUSIONS: This machine learning-based algorithm is a useful predictive tool for anticipating patient mortality at clinically useful timepoints, and is capable of accurate mortality prediction for mechanically ventilated patients as well as those diagnosed with pneumonia and COVID-19.

6.
SSRN; 2020.
Preprint | SSRN | ID: ppcovidwho-1590

ABSTRACT

Background: Identifying patient characteristics associated with poor outcomes is vital to minimizing death due to COVID-19. Identification of features that pre

7.
Comput Biol Med ; 124: 103949, 2020 09.
Article in English | MEDLINE | ID: covidwho-695377

ABSTRACT

BACKGROUND: Currently, physicians are limited in their ability to provide an accurate prognosis for COVID-19 positive patients. Existing scoring systems have been ineffective for identifying patient decompensation. Machine learning (ML) may offer an alternative strategy. A prospectively validated method to predict the need for ventilation in COVID-19 patients is essential to help triage patients, allocate resources, and prevent emergency intubations and their associated risks. METHODS: In a multicenter clinical trial, we evaluated the performance of a machine learning algorithm for prediction of invasive mechanical ventilation of COVID-19 patients within 24 h of an initial encounter. We enrolled patients with a COVID-19 diagnosis who were admitted to five United States health systems between March 24 and May 4, 2020. RESULTS: 197 patients were enrolled in the REspirAtory Decompensation and model for the triage of covid-19 patients: a prospective studY (READY) clinical trial. The algorithm had a higher diagnostic odds ratio (DOR, 12.58) for predicting ventilation than a comparator early warning system, the Modified Early Warning Score (MEWS). The algorithm also achieved significantly higher sensitivity (0.90) than MEWS, which achieved a sensitivity of 0.78, while maintaining a higher specificity (p < 0.05). CONCLUSIONS: In the first clinical trial of a machine learning algorithm for ventilation needs among COVID-19 patients, the algorithm demonstrated accurate prediction of the need for mechanical ventilation within 24 h. This algorithm may help care teams effectively triage patients and allocate resources. Further, the algorithm is capable of accurately identifying 16% more patients than a widely used scoring system while minimizing false positive results.


Subject(s)
Betacoronavirus , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/physiopathology , Machine Learning , Pneumonia, Viral/diagnosis , Pneumonia, Viral/physiopathology , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/physiopathology , Adult , Aged , Aged, 80 and over , Algorithms , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/statistics & numerical data , Computational Biology , Coronavirus Infections/drug therapy , Coronavirus Infections/therapy , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/therapy , Prognosis , Prospective Studies , Respiration, Artificial , Respiratory Insufficiency/therapy , SARS-CoV-2 , Sensitivity and Specificity , Triage/methods , Triage/statistics & numerical data , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL