Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Sci Adv ; 7(1)2021 01.
Article in English | MEDLINE | ID: covidwho-1388432


Using AI, we identified baricitinib as having antiviral and anticytokine efficacy. We now show a 71% (95% CI 0.15 to 0.58) mortality benefit in 83 patients with moderate-severe SARS-CoV-2 pneumonia with few drug-induced adverse events, including a large elderly cohort (median age, 81 years). An additional 48 cases with mild-moderate pneumonia recovered uneventfully. Using organotypic 3D cultures of primary human liver cells, we demonstrate that interferon-α2 increases ACE2 expression and SARS-CoV-2 infectivity in parenchymal cells by greater than fivefold. RNA-seq reveals gene response signatures associated with platelet activation, fully inhibited by baricitinib. Using viral load quantifications and superresolution microscopy, we found that baricitinib exerts activity rapidly through the inhibition of host proteins (numb-associated kinases), uniquely among antivirals. This reveals mechanistic actions of a Janus kinase-1/2 inhibitor targeting viral entry, replication, and the cytokine storm and is associated with beneficial outcomes including in severely ill elderly patients, data that incentivize further randomized controlled trials.

Antiviral Agents/pharmacology , Azetidines/pharmacology , COVID-19/mortality , Enzyme Inhibitors/pharmacology , Janus Kinases/antagonists & inhibitors , Liver/virology , Purines/pharmacology , Pyrazoles/pharmacology , SARS-CoV-2/pathogenicity , Sulfonamides/pharmacology , Adult , Aged , Aged, 80 and over , COVID-19/drug therapy , COVID-19/metabolism , COVID-19/virology , Cytokine Release Syndrome , Cytokines/metabolism , Drug Evaluation, Preclinical , Female , Gene Expression Profiling , Humans , Interferon alpha-2/metabolism , Italy , Janus Kinases/metabolism , Liver/drug effects , Male , Middle Aged , Patient Safety , Platelet Activation , Proportional Hazards Models , RNA-Seq , Spain , Virus Internalization/drug effects
Sci Rep ; 11(1): 15619, 2021 08 02.
Article in English | MEDLINE | ID: covidwho-1338550


Triage is crucial for patient's management and estimation of the required intensive care unit (ICU) beds is fundamental for health systems during the COVID-19 pandemic. We assessed whether chest computed tomography (CT) of COVID-19 pneumonia has an incremental role in predicting patient's admission to ICU. We performed volumetric and texture analysis of the areas of the affected lung in CT of 115 outpatients with COVID-19 infection presenting to the emergency room with dyspnea and unresponsive hypoxyemia. Admission blood laboratory including lymphocyte count, serum lactate dehydrogenase, D-dimer and C-reactive protein and the ratio between the arterial partial pressure of oxygen and inspired oxygen were collected. By calculating the areas under the receiver-operating characteristic curves (AUC), we compared the performance of blood laboratory-arterial gas analyses features alone and combined with the CT features in two hybrid models (Hybrid radiological and Hybrid radiomics)for predicting ICU admission. Following a machine learning approach, 63 patients were allocated to the training and 52 to the validation set. Twenty-nine (25%) of patients were admitted to ICU. The Hybrid radiological model comprising the lung %consolidation performed significantly (p = 0.04) better in predicting ICU admission in the validation (AUC = 0.82; 95% confidence interval 0.73-0.97) set than the blood laboratory-arterial gas analyses features alone (AUC = 0.71; 95% confidence interval 0.56-0.86). A risk calculator for ICU admission was derived and is available at: . The volume of the consolidated lung in CT of patients with COVID-19 pneumonia has a mild but significant incremental value in predicting ICU admission.

COVID-19 , Intensive Care Units , Models, Biological , Pandemics , Patient Admission , SARS-CoV-2/metabolism , Tomography, X-Ray Computed , COVID-19/blood , COVID-19/diagnostic imaging , COVID-19/epidemiology , COVID-19/therapy , Female , Humans , Male , Middle Aged , Oxygen/blood , Predictive Value of Tests
Diagn Microbiol Infect Dis ; 101(2): 115434, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1240279


Three assays for SARS-CoV-2 antigen detection in nasopharyngeal swabs (Lumipulse® G SARS-CoV-2 Ag [LPG], STANDARDTM F COVID-19 Ag FIA [STF] and AFIAS COVID-19 Ag [AFC] were evaluated. Compared to RT-PCR, LPG, AFC and STF showed a variable sensitivity (87.9%, 37.5%, and 35.7%, respectively) and an overall high specificity (> 95%).

COVID-19 Serological Testing , COVID-19/diagnosis , Point-of-Care Testing , SARS-CoV-2/isolation & purification , Antigens, Viral/analysis , Humans , Immunoassay , Nasopharynx/virology , SARS-CoV-2/immunology , Sensitivity and Specificity