Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Computational Approaches for Novel Therapeutic and Diagnostic Designing to Mitigate SARS-CoV2 Infection: Revolutionary Strategies to Combat Pandemics ; : 49-76, 2022.
Article in English | Scopus | ID: covidwho-2149125


Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome-Coronavirus-2 (SARS-CoV-2) is one of the worst human health problems faced by humanity in recent centuries. An end to this health crisis relies on our ability to monitor viral transmission dynamics to check spread, develop therapeutics and preventatives for treatment of SARS-CoV-2 infection and understand the pathophysiology of the disease for better management of the patients. Omics technologies have played a crucial part in understanding the different aspects of COVID-19 disease. While whole-genome sequencing of SARS-CoV-2 isolates from across the globe has aided in the development of molecular diagnostic assays and informed about the viral evolution, knowledge of structure and function of viral proteome fueled the development of small molecule and biologicals therapeutics as well as vaccines. Concurrently, metabolomic profiling of samples from COVID-19 patients experiencing a varying level of disease severity has provided a snapshot of the pathophysiology of the disease helping device effective treatment regimen. This chapter deals with genomic, proteomic, and metabolomic profiling of SRAS-CoV-2. © 2022 Elsevier Inc. All rights reserved.

Iranian Journal of Microbiology ; 13(1):1-7, 2021.
Article in English | EMBASE | ID: covidwho-1107094


The magnitude and pace of global affliction caused by Coronavirus Disease-19 (COVID-19) is unprecedented in the recent past. From starting in a busy seafood market in the Chinese city of Wuhan, the virus has spread across the globe in less than a year, infecting over 76 million people and causing death of close to 1.7 million individuals worldwide. As no specific anti-viral treatment is currently available, the major strategy in containing the pandemic is focused on early diagnosis and prompt isolation of the infected individuals. Several diagnostic modalities have emerged within a relatively short period, which can be broadly classified into molecular and immunological assays. While the former category is centered around real-time PCR, which is currently considered the gold standard of diagnosis, the latter aims to detect viral antigens or antibodies specific to the viral antigens and is yet to be recommended as a stand-alone diagnostic tool. This review aims to provide an update on the different diagnostic modalities that are currently being used in diagnostic laboratories across the world as well as the up-coming methods and challenges associated with each of them. In a rapidly evolving diagnostic landscape with several testing platforms going through various phases of development and/or regulatory clearance, it is prudent that the clinical community familiarizes itself with the nuances of different testing modalities currently being employed for this condition.