Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Gastroenterology ; 162(7):S-593-S-594, 2022.
Article in English | EMBASE | ID: covidwho-1967336

ABSTRACT

Background: The immune response of SARS-CoV-2 vaccines is uncertain in those with Inflammatory Bowel Disease (IBD) due to a diverse array of immune-modifying therapies that vary in the mechanism of immunosuppression. Aim: We aimed to quantify the serological response to SARS-CoV-2 vaccines in those with IBD and determine antibody levels across varying therapeutic options. Methods: Individuals with IBD who received a first and/or second dose of a COVID-19 vaccine (Pfizer-BioNTech, Moderna, and/or AstraZeneca) were assessed for serological response (1–8 weeks after first dose;1–8 weeks after second dose, 8–18 weeks after second dose, 18+ weeks after second dose) using the SARS-CoV-2 IgG II Quant assay to the receptor-binding domain of the SARS-CoV-2 spike protein. The cohort was stratified based on age, sex, vaccine received, IBD type, IBD therapeutic, and prior confirmed diagnosis of COVID-19. The primary outcome was seroconversion defined as IgG levels of ³50 AU/mL. Secondarily, we evaluated the geometric mean titer (GMT) with 95% confidence intervals (CI). Results: Table 1 describes the characteristics of individuals with IBD (n=466) with serological data following the first dose (n=247) and/or second dose (n=413) of a COVID-19 vaccine. After 1–8 weeks following first dose of the vaccine, 81.4% seroconverted, with the lowest first-dose conversion rates in patients taking anti- TNF monotherapy (80.3%), anti-TNF combination therapy (51.5%), and corticosteroids (50.0%) (Table 1). Overall, 98.4% of the cohort seroconverted within 1–8 weeks of the second dose. Over time, seropositive rates decreased with 95.8% seroconversion within 8– 18 weeks of the second dose and 90.5% after 18 weeks. Seroconversion after second dose was consistently high across all medication classes (range: 94.6%–100.0%), except for oral corticosteroids (62.5%). GMT levels significantly increased (p<0.0001) from first dose (1825 AU/mL [95% CI: 981, 2668 AU/mL]) to second dose at 1–8 week (9059 AU/mL [7698, 10420 AU/mL]) but fell significantly (p<0.0001) to 3649 AU/mL (95% CI: 2562, 4736 AU/ mL) 8–18 weeks from second dose and 2527 AU/mL (95% CI: 883, 4172 AU/mL) 18+ weeks after second dose (Table 1, Figure 1). GMT levels 1–8 weeks after second dose were higher in those with prior COVID-19 (16,770 AU/mL), but lower in those receiving anti- TNF combination therapy (4231 AU/mL) and oral corticosteroids (5996 AU/mL) (Table 1). Conclusion: Seroconversion rates following full-regimen vaccination are high in patients with inflammatory bowel disease across all medication classes except for anti-TNF combination therapy and oral corticosteroids. Antibody titres and seroconversion rates tend to decrease after eight weeks post-full vaccination, which is consistent across medication classes. (Table Presented) Table 1. Patient and vaccine characteristics, seroconversion rates, and geometric mean titres by prior PCR-confirmed COVID-19 status for each medication class. (Figure Presented) Figure 1. Log-transformed anti-SARS-CoV-2 spike antibody concentration per vaccine category. Black points represent GMTs while narrow black bars represent bounds of 95% CI associated with each GMT. Solid blue line represents threshold for positive seroconversion [ln (50 AU/mL)].

2.
Gastroenterology ; 162(7):S-160-S-161, 2022.
Article in English | EMBASE | ID: covidwho-1967251

ABSTRACT

Background: The immune response to a two-dose regimen of SARS-CoV-2 vaccination in those with Inflammatory Bowel Disease (IBD) has been consistently high in emerging research. Serological responses following a third dose have yet to be established. Aim: We aimed to quantify the serological response to a third dose of SARS-CoV-2 vaccines in those with IBD and compare to responses after a two-dose regimen. Methods: Individuals with IBD who have received at least two doses of a COVID-19 vaccine were assessed for serological response using the SARS-CoV-2 IgG II Quant assay to the receptor-binding domain of the SARSCoV- 2 spike protein at least eight weeks after second dose and then after third dose. The primary outcome was seroconversion defined as IgG levels of ≥50 AU/mL. Secondarily, we evaluated the geometric mean titer (GMT) with 95% confidence intervals (CI). Outcomes were stratified by prior COVID-19 history. A Wilcoxon rank sum test was used to compare antibody titres following 3rd dose vaccination and titres following 2nd dose vaccination. For patients with both post-2nd and post-3rd vaccination serology, the difference in antibody titres between doses was determined and the mean difference was tested using one-sample Student's t-tests. Results: Table 1 describes the characteristics of individuals with IBD (n = 271) with serological data following the corresponding dose for those with 2nd dose vaccination (n = 175) compared to those with a 3rd dose of vaccine (n = 96). Seroconversion following 3rd dose vaccination occurred for all individuals (100.0%), compared to a 94.4% seroconversion rate at least eight weeks following 2nd dose vaccination (range: 8 to 35 weeks post-2nd dose). GMT for the post-3rd dose cohort (16424 AU/mL [13437, 19411 AU/mL]) was significantly higher (p<0.0001) than the post-2nd dose cohort (3261 AU/mL [2356, 4165 AU/mL] (Table 1, Figure 1b). Individual titres as a function of time following 2nd dose vaccination are seen in Figure 1a for both 3rd dose and 2nd dose cohorts. For individuals with serology following both 2nd dose and 3rd dose vaccination (n = 82), seroconversion rates increased from 97.6% to 100.0% after the 3rd dose. GMT following post-3rd dose vaccination also increased with a mean difference in antibody titres between post-3rd dose and post-2nd dose vaccination of 11384 AU/mL (8541, 14228 AU/mL, p < 0.0001). This difference was significant for both individuals with prior COVID-19 history (11682 AU/mL [95% CI: 8618, 14746 AU/mL, p<0.0001]) and individuals without (8194 AU/mL [95% CI: 988, 15400 AU/mL]). Conclusion: Seroconversion rates and antibody response following third dose vaccination are substantially increased as compared to second dose in patients with IBD. Third dose vaccination can counter the decrease in antibody concentration over time following a two-dose regimen. (Table Presented) Table 1. Patient characteristics, vaccine type, seroconversion rates, and geometric mean titres by prior COVID-19 status for post-3rd dose and post-2nd dose cohorts

3.
PLoS One ; 17(7): e0251771, 2022.
Article in English | MEDLINE | ID: covidwho-1933198

ABSTRACT

Cave-dwelling bats widely use anthropogenic structures such as temples in south Asia as roosting and nursery sites. Such roosts are constantly under threat, even more so after the COVID-19 pandemic. Despite the importance of such roosts, there is no detailed understanding of what makes temples favorable for bats and the critical factors for their persistence. Here we relate temple microhabitat characteristics and land use around ancient temples (>400 years) to bat species richness and abundance in the Tamiraparani river basin of south India. Temples were selected for sampling along the river basin based on logistics and permission to access them. We counted bats at the roost in the mornings and late afternoons from inside the temples. Temple characteristics such as dark rooms, walkways, crevices, towers, and disturbances to the roosts were recorded. Based on European Space Agency land use classifications, we recorded land use such as crops, trees, scrub, grassland, urban areas, and water availability within a 5 km radius of the temple. Generalized Linear Mixed Models were used to relate the counts in temples with microhabitats and land use. We sampled 59 temples repeatedly across 5 years which yielded a sample of 246 survey events. The total number of bats counted was 20,211, of which Hipposideros speoris was the most common (9,715), followed by Rousettus leschenaultii (5,306), Taphozous melanopogon (3,196), Megaderma lyra (1,497), Tadarida aegyptiaca (303), Pipistrellus sp. (144) and Rhinopoma hardwickii (50). About 39% of the total bats occurred in dark rooms and 51% along walkways. Species richness and total abundance were related to the availability of dark rooms and the number of buildings in the temple. Land use elements only had a weak effect, but scrub and grassland, even though they were few, are critical for bats. We conclude that retaining undisturbed dark rooms with small exits in temples and other dimly lit areas and having natural areas around temples are vital for bat conservation.


Subject(s)
COVID-19 , Chiroptera , Agriculture , Animals , Humans , Pandemics , Trees
4.
Inflammatory Bowel Diseases ; 28(SUPPL 1):S48, 2022.
Article in English | EMBASE | ID: covidwho-1722441

ABSTRACT

BACKGROUND: The immune response of SARS-CoV-2 vaccines is uncertain in those with Inflammatory Bowel Disease (IBD) due to a diverse array of immune-modifying therapies that vary in the mechanism of immunosuppression. AIM: We aimed to quantify the serological response to SARS-CoV-2 vaccines in those with IBD and determine antibody levels across varying therapeutic options. METHODS: Individuals with IBD who received first and/or second dose of a COVID- 19 vaccine (Pfizer-BioNTech, Moderna, and/or AstraZeneca) were assessed for serological response (2-4 weeks after first dose;2-8 weeks after second dose and 8-18 weeks after second dose) using the SARS-CoV-2 IgG II Quant assay to the spike protein of SARS-CoV-2. The cohort was stratified based on age, sex, vaccine received, IBD type, IBD therapeutic, and prior confirmed diagnosis of COVID-19. The primary outcome was seroconversion defined as IgG levels of ≥50 AU/mL. Secondarily, we evaluated the geometric mean titer (GMT) with 95% confidence intervals (CI). RESULTS: Table 1 describes the characteristics of individuals with IBD (n=464) with serological data following the first dose (n=266) and/or second dose (n=303) of a COVID-19 vaccine. After the first dose of the vaccine, 81.6% seroconverted, with the lowest first-dose conversion rates in patients taking anti-TNF monotherapy (79.7%), anti-TNF combination therapy (52.9%), and corticosteroids (50.0%) (Table 1). Overall, 98.4% of the cohort seroconverted within 2-8 weeks of the second dose, with 94.6% seropositive within 8-18 weeks of the second dose. Seroconversion after second dose was consistently high across all medication classes (range: 94.6%-100.0%), except for oral corticosteroids (62.5%). GMT levels significantly increased (p<0.0001) from first dose (1679 AU/mL) to second dose at 2-8 week (7943 AU/mL) but fell significantly (<0.0001) to 3565 AU/mL 8-18 weeks from second dose (Table 1, Figure 1). GMT levels 2-8 weeks after second dose were higher in those with prior COVID-19 (12,729 AU/mL), but lower in those receiving anti-TNF combination therapy (4231 AU/mL) and oral corticosteroids (5996 AU/mL) (Table 1). CONCLUSION: Seroconversion rates following fullregimen vaccination are high in patients with inflammatory bowel disease across all medication classes except for anti-TNF combination therapy and oral corticosteroids. Antibody titres and seroconversion rates tend to decrease after 8 weeks postfull vaccination, which is consistent across medication classes.

SELECTION OF CITATIONS
SEARCH DETAIL