Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Current Research in Translational Medicine ; : 103348, 2022.
Article in English | ScienceDirect | ID: covidwho-1796171

ABSTRACT

To fight against the worldwide COVID-19 pandemic, the development of an effective and safe vaccine against SARS-CoV-2 is required. As potential pandemic vaccines, DNA/RNA vaccines, viral vector vaccines and protein-based vaccines have been rapidly developed to prevent pandemic spread worldwide. In this study, we designed plasmid DNA vaccine targeting the SARS-CoV-2 Spike glycoprotein (S protein) as pandemic vaccine, and the humoral, cellular, and functional immune responses were characterized to support proceeding to initial human clinical trials. After intramuscular injection of DNA vaccine encoding S protein with alum adjuvant (three times at 2-week intervals), the humoral immunoreaction, as assessed by anti-S protein or anti-receptor-binding domain (RBD) antibody titers, and the cellular immunoreaction, as assessed by antigen-induced IFNγ expression, were up-regulated. In IgG subclass analysis, IgG2b was induced as the main subclass. Based on these analyses, DNA vaccine with alum adjuvant preferentially induced Th1-type T cell polarization. We confirmed the neutralizing action of DNA vaccine-induced antibodies by a binding assay of RBD recombinant protein with angiotensin-converting enzyme 2 (ACE2), a receptor of SARS-CoV-2, and pseudo-virus assay, TCID assay with live SARS-CoV-2. Further B cell epitope mapping analysis using a peptide array showed that most vaccine-induced antibodies recognized the S2 and RBD subunits. Finally, DNA vaccine protected hamsters form SARS-CoV-2 infection. In conclusion, DNA vaccine targeting the spike glycoprotein of SARS-CoV-2 might be an effective and safe approach to combat the COVID-19 pandemic.

2.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-329205

ABSTRACT

Introduction The vaccine against SARS-CoV-2 provides humoral immunity to fight COVID-19;however, the acquired immunity gradually declines. Booster vaccination restores reduced humoral immunity;however, its effect on newly emerging variants, such as the Omicron variant, is a concern. As the waves of COVID-19 cases and vaccine programs differ between countries, it is necessary to know the domestic effect of the booster. Methods Serum samples were obtained from healthcare workers (20-69 years old) in the Pfizer BNT162b2 vaccine program at the Toyama University Hospital 6 months after the second dose (6mA2D, n = 648) and 2 weeks after the third dose (2wA3D, n = 565). The anti-SARS-CoV-2 antibody level was measured, and neutralization against the wild-type and variants (Delta and Omicron) was evaluated using pseudotyped viruses. Data on booster-related events were collected using questionnaires. Results The median anti-SARS-CoV-2 antibody was >30.9-fold elevated after the booster (6mA2D, 710.0 U/mL [interquartile range (IQR): 443.0–1068.0 U/mL];2wA3D, 21927 U/mL [IQR: 15321.0–>25000.0 U/mL]). Median neutralizing activity using 100-fold sera against wild-type-, Delta-, and Omicron-derived variants was elevated from 84.6%, 36.2%, and 31.2% at 6mA2D to >99.9%, 99.1%, and 94.6% at 2wA3D, respectively. The anti-SARS-CoV-2 antibody levels were significantly elevated in individuals with fever ≥37.5 °C, general fatigue, and myalgia, local swelling, and local hardness. Conclusion The booster effect, especially against the Omicron variant, was observed in the Japanese population. These findings contribute to the precise understanding of the efficacy and side effects of the booster and the promotion of vaccine campaigns.

3.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-329088

ABSTRACT

Mutations continue to accumulate within the SARS-CoV-2 genome, and the ongoing epidemic has shown no signs of ending. It is critical to predict problematic mutations that may arise in clinical environments and assess their properties in advance to quickly implement countermeasures against future variant infections. In this study, we identified mutations resistant to remdesivir, which is widely administered to SARS-CoV-2-infected patients, and discuss the cause of resistance. First, we simultaneously constructed eight recombinant viruses carrying the mutations detected in in vitro serial passages of SARS-CoV-2 in the presence of remdesivir. Time course analyses of cellular virus infections showed significantly higher infectious titers and infection rates in mutant viruses than wild type virus under treatment with remdesivir. Next, we developed a mathematical model in consideration of the changing dynamic of cells infected with mutant viruses with distinct propagation properties and defined that mutations detected in in vitro passages canceled the antiviral activities of remdesivir without raising virus production capacity. Finally, molecular dynamics simulations of the NSP12 protein of SARS-CoV-2 revealed that the molecular vibration around the RNA-binding site was increased by the introduction of mutations on NSP12. Taken together, we identified multiple mutations that affected the flexibility of the RNA binding site and decreased the antiviral activity of remdesivir. Our new insights will contribute to developing further antiviral measures against SARS-CoV-2 infection.

4.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-324720

ABSTRACT

Given the potential infectivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on surfaces for hours to days, it is important to find safe and effective disinfecting agents to help prevent the spread and transmission of this new virus responsible for the COVID-19 pandemic. Toward this end, in this study, the virucidal effect of acetic acid and vinegar, as safe foods, on SARS-CoV-2 was evaluated. Both 4% and 6% acetic acid aqueous solutions effectively inactivated the virus after 5-min incubation with a reduction over 4 log, resulting in a viral titre below the detection limit. In addition, white distilled vinegar (5% and 6% acetic acid concentrations) inactivated SARS-CoV-2 after 1-min incubation with reduction of over 4 log and a viral titre below the detection limit. These preliminary findings provide valuable information on the inactivation of SARS-CoV2, offering insight for effective infection control.

5.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-322534

ABSTRACT

High-throughput, high-accuracy detection of emerging viruses allows for pandemic prevention and control. Currently, reverse transcription-polymerase chain reaction (RT-PCR) is used to diagnose the presence of SARS-CoV-2. The principle of the test is to detect RNA in the virus using a pair of primers that specifically binds to the base sequence of the viral RNA. However, RT-PCR is a sophisticated technique requiring a time-consuming pretreatment procedure for extracting viral RNA from clinical specimens and to obtain high sensitivity. Here, we report a method for detecting novel coronaviruses with high sensitivity using artificial intelligent nanopores utilizing a simple procedure that does not require RNA extraction. Artificial intelligent nanopore platform consists of machine learning software on the servers, portable high-speed and high-precision current measuring instrument, and scalable, cost-effective semiconducting nanopore modules. Here we show that the artificial intelligent nanopores are successful in accurate identification of four types of coronaviruses, HCoV-229E, SARS-CoV, MERS-CoV, and SARS-CoV-2, which are usually extremely difficult to detect. The positive/negative diagnostics of the new coronavirus is achieved with a sensitivity of 95 % and specificity of 92 % with a 5-minute diagnosis. The platform enables high throughput diagnostics with low false negatives for the novel coronavirus.

6.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-317457

ABSTRACT

Many variants that naturally acquire multiple mutations have emerged during the current SARS-CoV-2 pandemic, which is devastating societies worldwide. Emerging mutations can affect viral properties such as infectivity and immune resistance. Although the sensitivity of naturally occurring SARS-CoV-2 variants to humoral immunity has recently been investigated, sensitivity to human leukocyte antigen (HLA)-restricted cellular immunity remains unaddressed. Here, we demonstrate that two recently emerging mutations in the receptor - binding domain of the SARS-CoV-2 spike protein, L452R (in B.1.427/429) and Y453F (in B.1.298), confer escape from HLA-A24-restricted cellular immunity. These mutations reinforce the affinity toward the viral receptor ACE2;notably, the L452R mutation increases spike stability and viral infectivity and potentially promotes viral replication. Our data suggest that HLA-restricted cellular immunity potentially affects the evolution of viral phenotypes and that a further threat of the SARS-CoV-2 pandemic is escape from cellular immunity.Funding: This study was supported in part by AMED Research Program on Emerging and Re-emerging Infectious Diseases 20fk0108163 (to A.S.), 20fk0108146 (to K.S.), 19fk0108171 (to S.N. and K.S.), 20fk0108270 (to K.S.) and 20fk0108413 (to T.I., S.N. and K.S.);AMED Research Program on HIV/AIDS 20fk0410019 (to T.U. and K.S.), 20fk0410014 (to K.S.) and 21fk0410039 (to K.S.);AMED Japan Program for Infectious Diseases Research and Infrastructure 20wm0325009 (to A.S.);JST J RAPID JPMJJR2007 (to K.S.);JST SICORP (e-ASIA) JPMJSC20U1 (to K.S.);JSTCREST JPMJCR20H6 (to S.N) and JPMJCR20H4 (to K.S);JSPS KAKENHI Grant-in-Aid for Scientific Research B 18H02662 (to K.S.) and 21H02737 (to K.S.);JSPS KAKENHI Grant-in-Aid for Scientific Research on Innovative Areas 16H06429 (to S.N. and K.S.), 16K21723 (to S.N. and K.S.), 17H05823 (to S.N.), 17H05813 (to K.S.), 19H04843 (to S.N.) and 19H04826 (to K.S.);JSPS Fund for the Promotion of Joint International Research (Fostering Joint International Research) 18KK0447 (to K.S.);JSPS Core-to-Core Program JPJSCCB20190009 (to T.U.) andJPJSCCA20190008 (A. Advanced Research Networks) (to K.S.);JSPS Research Fellow DC1 19J20488 (to I.K.);JSPS Leading Initiative for Excellent Young Researchers (LEADER) (to T.I.);ONO Medical Research Foundation (to K.S.);Ichiro Kanehara Foundation (to K.S.);Lotte Foundation (to K.S.);Mochida Memorial Foundation for Medical and Pharmaceutical Research (to K.S.);Daiichi Sankyo Foundation of Life Science (to K.S.);Sumitomo Foundation (to K.S.);Uehara Foundation (to K.S.);Takeda Science Foundation (to C.M., T.I. and K.S.);The Tokyo Biochemical Research Foundation (to K.S.);Mitsubishi Foundation (to T.I.);Shin Nihon Foundation of Advanced Medical Research (to T.I.);An intramural grant from Kumamoto University COVID-19 Research Projects (AMABIE) (to C.M., T.I. and T.U.);Kumamoto University International Collaborative Research Grants (to T.U.);Intercontinental Research and Educational Platform Aiming for Eradication of HIV/AIDS (to T.I. and T.U.);2020 Tokai University School of Medicine Research Aid (to S.N.);and Joint Usage/Research Center program of Institute for Frontier Life and Medical Sciences, Kyoto University (to K.S.). T.S.T and I.N. are the recipients of the doctoral course scholarship from Japanese Government.Conflict of Interest: The authors declare that no competing interests exist.Ethical Approval: All protocols involving human subjects recruited at Kyushu University Hospital, Japan, National Hospital Organization Kyushu Medical Center, Japan, and Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Japan, were reviewed and approved by the Ethics Committee for Epidemiological andGeneral Research at the Faculty of Life Science, Kumamoto University (approval numbers 2066 and 461). All human subjects provided written informed consent.

7.
Sci Rep ; 12(1): 1060, 2022 01 20.
Article in English | MEDLINE | ID: covidwho-1639278

ABSTRACT

The COVID-19 pandemic has created urgent demand for rapid detection of the SARS-CoV-2 coronavirus. Herein, we report highly sensitive detection of SARS-CoV-2 nucleocapsid protein (N protein) using nanoparticle-enhanced surface plasmon resonance (SPR) techniques. A crucial plasmonic role in significantly enhancing the limit of detection (LOD) is revealed for exceptionally large gold nanoparticles (AuNPs) with diameters of hundreds of nm. SPR enhanced by these large nanoparticles lowered the LOD of SARS-CoV-2 N protein to 85 fM, resulting in the highest SPR detection sensitivity ever obtained for SARS-CoV-2 N protein.


Subject(s)
Coronavirus Nucleocapsid Proteins , Gold/chemistry , Metal Nanoparticles/chemistry , SARS-CoV-2/chemistry , Surface Plasmon Resonance , Coronavirus Nucleocapsid Proteins/analysis , Coronavirus Nucleocapsid Proteins/chemistry , Phosphoproteins/analysis , Phosphoproteins/chemistry
8.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-294736

ABSTRACT

Many specimens suffer from low particle density and/or preferred orientation in cryoEM specimen grid preparation, making data collection and structure determination time consuming. We developed an epoxidized graphene grid (EG-grid) that effectively immobilizes protein particles by applying an oxidation reaction using photoactivated ClO 2 • and further chemical modification. The particle density and orientation distribution are both dramatically improved, having enabled us to reconstruct the density map of GroEL and glyceraldehyde 3-phosphate dehydrogenase (GAPDH), at 1.99 and 2.16 Å resolution from only 504 and 241 micrographs, respectively. A low concentration sample solution of 0.1 mg ml −1 was sufficient to reconstruct a 3.10 Å resolution density map of SARS-CoV-2 spike protein from 1,163 micrographs. The density maps of V 1 -ATPase, β-galactosidase, and apoferritin were also reconstructed at 3.03, 1.81, and 1.29 Å resolution, respectively. These results indicate that the EG-grid will be a powerful tool for high-throughput cryoEM data collection to accelerate high-resolution structural analysis of biological macromolecules.

9.
Microbiol Spectr ; 9(3): e0056121, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1546468

ABSTRACT

Vaccines against severe acute respiratory syndrome coronavirus-2 have been introduced. To investigate the relationship between vaccine-induced humoral immunity and patient age, we measured antibody levels and neutralization in vaccinated sera. Sera from 13 to 17 days after the second dose of the BNT162b2 vaccine were collected from health care workers at the University of Toyama (n = 740). Antibody levels were measured by the anti-receptor binding domain antibody test (anti-RBD test), and neutralization against wild-type (WT), α- and ß-variant pseudotyped viruses were assayed using a high-throughput chemiluminescent reduction neutralizing test (htCRNT; positivity cutoff, 50% neutralization at serum dilution 1:100). Basic clinical characteristics were obtained from questionnaires. Antibodies were confirmed in all participants in both the anti-RBD test (median, 2,112 U/ml; interquartile range [IQR], 1,275 to 3,390 U/ml) and the htCRNT against WT (median % inhibition, >99.9; IQR, >99.9 to >99.9). For randomly selected sera (n = 61), 100.0% had positive htCRNT values against the α- and ß-derived variants. Among those who answered the questionnaire (n = 237), the values of the anti-RBD test were negatively correlated with age in females (P < 0.01). An age-dependent decline in neutralization was observed against the variants but not against the wild-type virus (wild type, P = 0.09; α, P < 0.01; ß, P < 0.01). The neutralizing activity induced by BNT162b2 was obtained not only against the wild-type virus, but also against the variants; however, there was an age-dependent decrease in the latter. Age-related heterogeneity of vaccine-acquired immunity is a concern in preventive strategies in the era dominated by variants. IMPORTANCE Since mRNA vaccines utilize wild-type SARS-CoV-2 spike protein as an antigen, there are potential concerns about acquiring immunity to variants of this virus. The neutralizing activity in BNT162b2-vaccinated individuals was higher against the wild-type virus than against its variants; this effect was more apparent in older age groups. This finding suggests that one of the weaknesses of the mRNA vaccine is the high risk of variant infection in the elderly population. Because the elderly are at a higher risk of SARS-CoV-2 infection, the age-dependent decline of neutralization against viral variants should be considered while planning vaccination programs that include boosters.


Subject(s)
/immunology , COVID-19/immunology , Immunity , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , COVID-19/prevention & control , Cross Reactions , Female , Humans , Immunity, Humoral , Male , Middle Aged , Neutralization Tests , SARS-CoV-2/classification , Spike Glycoprotein, Coronavirus , Vaccination , Young Adult , /immunology
10.
Microbiol Spectr ; 9(3): e0056021, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1546467

ABSTRACT

Serological tests are beneficial for recognizing the immune response against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). To identify protective immunity, optimization of the chemiluminescent reduction neutralizing test (CRNT) is critical. Whether commercial antibody tests have comparable accuracy is unknown. Serum samples were obtained from COVID-19 patients (n = 74), SARS-CoV-2 PCR-negative (n = 179), and suspected healthy individuals (n = 229) before SARS-CoV-2 variants had been detected locally. The convalescent phase was defined as the period after day 10 from disease onset or the episode of close contact. The CRNT using pseudotyped viruses displaying the wild-type (WT) spike protein and a commercial anti-receptor-binding domain (RBD) antibody test were assayed. Serology for the B.1.1.7 and B.1.351 variants was also assayed. Both tests concurred for symptomatic COVID-19 patients in the convalescent phase. They clearly differentiated between patients and suspected healthy individuals (sensitivity: 95.8% and 100%, respectively; specificity: 99.1% and 100%, respectively). Anti-RBD antibody test results correlated with neutralizing titers (r = 0.31, 95% confidence interval [CI] 0.22-0.38). Compared with the WT, lower CRNT values were observed for the variants. Of the samples with ≥100 U/mL by the anti-RBD antibody test, 77.8% and 88.9% showed ≥50% neutralization against the B.1.1.7 and the B.1.351 variants, respectively. Exceeding 100 U/mL in the anti-RBD antibody test was associated with neutralization of variants (P < 0.01). The CRNT and commercial anti-RBD antibody test effectively classified convalescent COVID-19 patients. Strong positive results with the anti-RBD antibody test can reflect neutralizing activity against emerging variants. IMPORTANCE This study provides a diagnostic evidence of test validity, which can lead to vaccine efficacy and proof of recovery after COVID-19. It is not easy to know neutralization against SARS-CoV-2 in the clinical laboratory because of technical and biohazard issues. The correlation of the quantitative anti-receptor-binding domain antibody test, which is widely available, with neutralizing test indicates that we can know indirectly the state of acquisition of functional immunity against wild and variant-type viruses in the clinical laboratory.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , COVID-19/immunology , Neutralization Tests/methods , Protein Binding/immunology , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Female , Humans , Male , Middle Aged , SARS-CoV-2/classification , Young Adult
11.
J Exp Med ; 218(12)2021 12 06.
Article in English | MEDLINE | ID: covidwho-1462245

ABSTRACT

Broadly protective vaccines against SARS-related coronaviruses that may cause future outbreaks are urgently needed. The SARS-CoV-2 spike receptor-binding domain (RBD) comprises two regions, the core-RBD and the receptor-binding motif (RBM); the former is structurally conserved between SARS-CoV-2 and SARS-CoV. Here, in order to elicit humoral responses to the more conserved core-RBD, we introduced N-linked glycans onto RBM surfaces of the SARS-CoV-2 RBD and used them as immunogens in a mouse model. We found that glycan addition elicited higher proportions of the core-RBD-specific germinal center (GC) B cells and antibody responses, thereby manifesting significant neutralizing activity for SARS-CoV, SARS-CoV-2, and the bat WIV1-CoV. These results have implications for the design of SARS-like virus vaccines.


Subject(s)
Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , Polysaccharides/immunology , SARS Virus/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Motifs , Animals , COVID-19/genetics , COVID-19/prevention & control , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Female , Humans , Male , Mice , Mice, Inbred BALB C , Polysaccharides/genetics , Protein Domains , SARS Virus/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
12.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Article in English | MEDLINE | ID: covidwho-1462067

ABSTRACT

The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global threat to human health and life. A useful pathological animal model accurately reflecting human pathology is needed to overcome the COVID-19 crisis. In the present study, COVID-19 cynomolgus monkey models including monkeys with underlying diseases causing severe pathogenicity such as metabolic disease and elderly monkeys were examined. Cynomolgus macaques with various clinical conditions were intranasally and/or intratracheally inoculated with SARS-CoV-2. Infection with SARS-CoV-2 was found in mucosal swab samples, and a higher level and longer period of viral RNA was detected in elderly monkeys than in young monkeys. Pneumonia was confirmed in all of the monkeys by computed tomography images. When monkeys were readministrated SARS-CoV-2 at 56 d or later after initial infection all of the animals showed inflammatory responses without virus detection in swab samples. Surprisingly, in elderly monkeys reinfection showed transient severe pneumonia with increased levels of various serum cytokines and chemokines compared with those in primary infection. The results of this study indicated that the COVID-19 cynomolgus monkey model reflects the pathophysiology of humans and would be useful for elucidating the pathophysiology and developing therapeutic agents and vaccines.


Subject(s)
COVID-19/immunology , Disease Models, Animal , Macaca fascicularis/immunology , Primate Diseases/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/virology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Lung/diagnostic imaging , Lung/immunology , Lung/virology , Macaca fascicularis/virology , Male , Primate Diseases/virology , SARS-CoV-2/physiology , Tomography, X-Ray Computed/methods , Virus Shedding/immunology , Virus Shedding/physiology
13.
Nat Commun ; 12(1): 3802, 2021 06 21.
Article in English | MEDLINE | ID: covidwho-1387351

ABSTRACT

SARS-CoV-2 has mutated during the global pandemic leading to viral adaptation to medications and vaccinations. Here we describe an engineered human virus receptor, ACE2, by mutagenesis and screening for binding to the receptor binding domain (RBD). Three cycles of random mutagenesis and cell sorting achieved sub-nanomolar affinity to RBD. Our structural data show that the enhanced affinity comes from better hydrophobic packing and hydrogen-bonding geometry at the interface. Additional disulfide mutations caused the fixing of a closed ACE2 conformation to avoid off-target effects of protease activity, and also improved structural stability. Our engineered ACE2 neutralized SARS-CoV-2 at a 100-fold lower concentration than wild type; we also report that no escape mutants emerged in the co-incubation after 15 passages. Therapeutic administration of engineered ACE2 protected hamsters from SARS-CoV-2 infection, decreased lung virus titers and pathology. Our results provide evidence of a therapeutic potential of engineered ACE2.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/pharmacology , COVID-19/drug therapy , Mutation , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/metabolism , COVID-19/virology , Cells, Cultured , Cricetinae , Crystallography, X-Ray , Disease Models, Animal , Humans , Male , Molecular Dynamics Simulation , Protein Binding , Protein Engineering/methods , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism
14.
Immunity ; 54(10): 2385-2398.e10, 2021 10 12.
Article in English | MEDLINE | ID: covidwho-1370548

ABSTRACT

Potent neutralizing SARS-CoV-2 antibodies often target the spike protein receptor-binding site (RBS), but the variability of RBS epitopes hampers broad neutralization of multiple sarbecoviruses and drifted viruses. Here, using humanized mice, we identified an RBS antibody with a germline VH gene that potently neutralized SARS-related coronaviruses, including SARS-CoV and SARS-CoV-2 variants. X-ray crystallography revealed coordinated recognition by the heavy chain of non-RBS conserved sites and the light chain of RBS with a binding angle mimicking the angiotensin-converting enzyme 2 (ACE2) receptor. The minimum footprints in the hypervariable region of RBS contributed to the breadth of neutralization, which was enhanced by immunoglobulin G3 (IgG3) class switching. The coordinated binding resulted in broad neutralization of SARS-CoV and emerging SARS-CoV-2 variants of concern. Low-dose therapeutic antibody treatment in hamsters reduced the virus titers and morbidity during SARS-CoV-2 challenge. The structural basis for broad neutralizing activity may inform the design of a broad spectrum of therapeutics and vaccines.


Subject(s)
Broadly Neutralizing Antibodies/immunology , Cross Reactions/immunology , SARS-CoV-2/immunology , Animals , Betacoronavirus/immunology , Binding Sites, Antibody , Broadly Neutralizing Antibodies/chemistry , Broadly Neutralizing Antibodies/therapeutic use , COVID-19/prevention & control , COVID-19/therapy , COVID-19/virology , Cricetinae , Humans , Immunoglobulin Class Switching , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/metabolism , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Mice , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
16.
Nat Commun ; 12(1): 3726, 2021 06 17.
Article in English | MEDLINE | ID: covidwho-1275922

ABSTRACT

High-throughput, high-accuracy detection of emerging viruses allows for the control of disease outbreaks. Currently, reverse transcription-polymerase chain reaction (RT-PCR) is currently the most-widely used technology to diagnose the presence of SARS-CoV-2. However, RT-PCR requires the extraction of viral RNA from clinical specimens to obtain high sensitivity. Here, we report a method for detecting novel coronaviruses with high sensitivity by using nanopores together with artificial intelligence, a relatively simple procedure that does not require RNA extraction. Our final platform, which we call the artificially intelligent nanopore, consists of machine learning software on a server, a portable high-speed and high-precision current measuring instrument, and scalable, cost-effective semiconducting nanopore modules. We show that artificially intelligent nanopores are successful in accurately identifying four types of coronaviruses similar in size, HCoV-229E, SARS-CoV, MERS-CoV, and SARS-CoV-2. Detection of SARS-CoV-2 in saliva specimen is achieved with a sensitivity of 90% and specificity of 96% with a 5-minute measurement.


Subject(s)
Artificial Intelligence , COVID-19 Nucleic Acid Testing/methods , Machine Learning , Nanopores , COVID-19 Nucleic Acid Testing/instrumentation , Coronavirus 229E, Human/genetics , Equipment Design/economics , Humans , Limit of Detection , Middle East Respiratory Syndrome Coronavirus/genetics , Nanoparticles/chemistry , Polymerase Chain Reaction , SARS-CoV-2/genetics , Saliva/virology , Sensitivity and Specificity , Software
18.
Cell Host Microbe ; 29(7): 1124-1136.e11, 2021 07 14.
Article in English | MEDLINE | ID: covidwho-1272337

ABSTRACT

Many SARS-CoV-2 variants with naturally acquired mutations have emerged. These mutations can affect viral properties such as infectivity and immune resistance. Although the sensitivity of naturally occurring SARS-CoV-2 variants to humoral immunity has been investigated, sensitivity to human leukocyte antigen (HLA)-restricted cellular immunity remains largely unexplored. Here, we demonstrate that two recently emerging mutations in the receptor-binding domain of the SARS-CoV-2 spike protein, L452R (in B.1.427/429 and B.1.617) and Y453F (in B.1.1.298), confer escape from HLA-A24-restricted cellular immunity. These mutations reinforce affinity toward the host entry receptor ACE2. Notably, the L452R mutation increases spike stability, viral infectivity, viral fusogenicity, and thereby promotes viral replication. These data suggest that HLA-restricted cellular immunity potentially affects the evolution of viral phenotypes and that a further threat of the SARS-CoV-2 pandemic is escape from cellular immunity.


Subject(s)
COVID-19/virology , Immunity, Cellular , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2 , COVID-19/epidemiology , Genome, Viral , Humans , Mutation , Phylogeny , Protein Binding , Viral Proteins/genetics , Virus Replication
20.
Cell ; 184(13): 3452-3466.e18, 2021 06 24.
Article in English | MEDLINE | ID: covidwho-1240207

ABSTRACT

Antibodies against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein prevent SARS-CoV-2 infection. However, the effects of antibodies against other spike protein domains are largely unknown. Here, we screened a series of anti-spike monoclonal antibodies from coronavirus disease 2019 (COVID-19) patients and found that some of antibodies against the N-terminal domain (NTD) induced the open conformation of RBD and thus enhanced the binding capacity of the spike protein to ACE2 and infectivity of SARS-CoV-2. Mutational analysis revealed that all of the infectivity-enhancing antibodies recognized a specific site on the NTD. Structural analysis demonstrated that all infectivity-enhancing antibodies bound to NTD in a similar manner. The antibodies against this infectivity-enhancing site were detected at high levels in severe patients. Moreover, we identified antibodies against the infectivity-enhancing site in uninfected donors, albeit at a lower frequency. These findings demonstrate that not only neutralizing antibodies but also enhancing antibodies are produced during SARS-CoV-2 infection.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , COVID-19/immunology , Cell Line , Chlorocebus aethiops , HEK293 Cells , Humans , Protein Binding/immunology , Protein Domains/immunology , Spike Glycoprotein, Coronavirus/genetics , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL