Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Add filters

Document Type
Year range
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.06.06.22275866


Wastewater-based epidemiology (WBE) has been extensively used during the COVID-19 pandemic to detect and monitor the spread of the SARS-CoV-2 virus and its variants. It has also proven to be an excellent tool to complement and support insights gained from reported clinical data. Globally, many groups have developed bioinformatics pipelines to analyse sequencing data from wastewater. Accurate calling of mutations from RNA extracted from wastewater samples is key in supporting clinical data to make informed decisions on the prevalence of variants, as well as in the use of WBE as a molecular surveillance tool. However, wastewater samples can be challenging to extract and sequence, and performance of variant-calling algorithms in this context has, so far, not been investigated. Analysis of the data and assignment of circulating variants depends heavily on the accuracy of the variant caller, particularly given the degraded nature of the viral RNA and the heterogeneous nature of metagenomic samples. To address this, we compared the performance of six variant callers (VarScan, iVAR, GATK, FreeBayes, LoFreq and BCFtools), used widely in bioinformatics pipelines, on 19 synthetic samples with a known mix of three different SARS-CoV-2 variant genomes (Alpha, Beta and Delta), as well as 13 wastewater samples collected in London between the 15 th and 18 th December 2021. Using the Quasimodo benchmarking tool to compare the six variant callers, we assessed the fundamental parameters of recall (sensitivity) and precision (specificity) in confirming the presence of a variant within the population. Our results show that BCFtools, FreeBayes and VarScan called the expected mutations with higher precision and recall than iVAR or GATK, although the latter identified more expected defining mutations. LoFreq gave the least reliable results due to the high number of false positive mutations detected, resulting in lower precision. Similar results were obtained for both the synthetic and wastewater samples.

medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.10.22270799


Introduction Viral sequencing of SARS-CoV-2 has been used for outbreak investigation, but there is limited evidence supporting routine use for infection prevention and control (IPC) within hospital settings. Methods We conducted a prospective non-randomised trial of sequencing at 14 acute UK hospital trusts. Sites each had a 4-week baseline data-collection period, followed by intervention periods comprising 8 weeks of 'rapid' (<48h) and 4 weeks of 'longer-turnaround' (5-10 day) sequencing using a sequence reporting tool (SRT). Data were collected on all hospital onset COVID-19 infections (HOCIs; detected [≥]48h from admission). The impact of the sequencing intervention on IPC knowledge and actions, and on incidence of probable/definite hospital-acquired infections (HAIs) was evaluated. Results A total of 2170 HOCI cases were recorded from October 2020-April 2021, with sequence reports returned for 650/1320 (49.2%) during intervention phases. We did not detect a statistically significant change in weekly incidence of HAIs in longer-turnaround (IRR 1.60, 95%CI 0.85-3.01; P=0.14) or rapid (0.85, 0.48-1.50; P=0.54) intervention phases compared to baseline phase. However, IPC practice was changed in 7.8% and 7.4% of all HOCI cases in rapid and longer-turnaround phases, respectively, and 17.2% and 11.6% of cases where the report was returned. In a per-protocol sensitivity analysis there was an impact on IPC actions in 20.7% of HOCI cases when the SRT report was returned within 5 days. Conclusion While we did not demonstrate a direct impact of sequencing on the incidence of nosocomial transmission, our results suggest that sequencing can inform IPC response to HOCIs, particularly when returned within 5 days.

medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.15.21253894


Background Nosocomial infections have posed a significant problem during the COVID-19 pandemic, affecting bed capacity and patient flow in hospitals. Effective infection control measures and identifying areas of highest risk is required to reduce the risk of spread to patients who are admitted with other illnesses. This is the first pandemic where whole genome sequencing (WGS) has been readily available. We demonstrate how WGS can be deployed to help identify and control outbreaks. Aims & Methods Swabs performed on patients to detect SARS-CoV-2 underwent RT-PCR on one of multiple different platforms available at Nottingham University Hospitals NHS Trust. Positive samples underwent WGS on the GridION platform using the ARTIC amplicon sequencing protocol at the University of Nottingham. Results Phylogenetic analysis from WGS and epidemiological data was used to identify an initial transmission that occurred in the admissions ward. It also showed high prevalence of asymptomatic staff infection with genetically identical viral sequences which may have contributed to the propagation of the outbreak. Actions were taken to help reduce the risk of nosocomial transmission by the introduction of rapid point of care testing in the admissions ward and introduction of portable HEPA14 filters. WGS was also used in two instances to exclude an outbreak by discerning that the phylotypes were not identical, saving time and resources. Conclusions In conjunction with accurate epidemiological data, timely WGS can identify high risk areas of nosocomial transmission, which would benefit from implementation of appropriate control measures. Conversely, WGS can disprove nosocomial transmission, validating existing control measures and maintaining clinical service, even where epidemiological data is suggestive of an outbreak.

Genomic Instability , Cross Infection
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.22.20176834


COVID-19 continues to cause a pandemic, having infected more than 20 million people globally. Successful elimination of the SARS-CoV-2 virus will require an effective vaccine. However, the immune correlates of infection are currently poorly understood. While neutralizing antibodies are believed to be essential for protection against infection, the contribution of the neutralizing antibody response to resolution of SARS-CoV-2 infection has not yet been defined. In this study the antibody responses to the SARS-CoV-2 spike protein and nucleocapsid proteins were investigated in a UK patient cohort, using optimised immunoassays and a retrovirus-based pseudotype entry assay. It was discovered that in severe COVID-19 infections an early antibody response to both antigens was associated with improved prognosis of infection. While not all SARS-CoV-2-reactive sera were found to possess neutralizing antibodies, neutralizing potency of sera was found to be greater in patients who went on to resolve infection, compared with those that died from COVID-19. Furthermore, viral genetic variation in spike protein was found to influence the production of neutralizing antibodies. Infection with the recently described spike protein variant 614G produced higher levels of neutralizing antibodies when compared to viruses possessing the 614D variant. These findings support the assertion that vaccines targeting generation of neutralizing antibodies may be useful at limiting SARS-CoV-2 infection. Assessment of the antibody responses to SARS-CoV-2 at time of diagnosis will be a useful addition to the diagnostic toolkit, enabling stratification of clinical intervention for severe COVID-19 disease.