Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Clin Infect Dis ; 2022 Apr 02.
Article in English | MEDLINE | ID: covidwho-1883004

ABSTRACT

BACKGROUND: Data on SARS-CoV-2 vaccine immunogenicity in PLWH are currently limited. Aim of the study was to investigate immunogenicity according to current CD4 T-cell count. METHODS: PLWH on ART attending a SARS-CoV-2 vaccination program, were included in a prospective immunogenicity evaluation after receiving BNT162b2 or mRNA-1273. Participants were stratified by current CD4 T-cell count (poor CD4 recovery, PCDR: <200/mm 3; intermediate CD4 recovery, ICDR: 200-500/mm 3 high CD4 recovery, HCDR: >500/mm 3). RBD-binding IgG, SARS-CoV-2 neutralizing antibodies (nAbs) and IFN-γ release were measured. As control group, HIV-negative healthcare workers (HCWs) were used. FINDINGS: Among 166 PLWH after 1 month from the second dose, detectable RBD-binding IgG were elicited in 86.7% of PCDR, 100% of ICDR, 98.7% of HCDR, and a neutralizing titre ≥1:10 elicited in 70.0%, 88.2% and 93.1%, respectively. Compared to HCDR, all immune response parameters were significantly lower in PCDR. After adjusting for confounders, current CD4 T-cell <200/mm 3 significantly predicted a poor magnitude of anti-RDB, nAbs and IFN-γ response. As compared with HCWs, PCDR elicited a consistently reduced immunogenicity for all parameters, ICDR only a reduced RBD-binding antibody response, whereas HCDR elicited a comparable immune response for all parameters. CONCLUSION: Humoral and cell-mediated immune response against SARS-CoV-2 were elicited in most of PLWH, albeit significantly poorer in those with CD4 T-cell <200/mm 3 versus those with >500 cell/mm 3 and HIV-negative controls. A decreased RBD-binding antibody response than HCWs was also observed in PLWH with CD4 T-cell 200-500/mm 3, whereas immune response elicited in PLWH with a CD4 T-cell >500/mm 3 was comparable to HIV-negative population.

2.
Cell Death Dis ; 13(5): 498, 2022 May 25.
Article in English | MEDLINE | ID: covidwho-1864735

ABSTRACT

The new coronavirus SARS-CoV-2 is the causative agent of the COVID-19 pandemic, which so far has caused over 6 million deaths in 2 years, despite new vaccines and antiviral medications. Drug repurposing, an approach for the potential application of existing pharmaceutical products to new therapeutic indications, could be an effective strategy to obtain quick answers to medical emergencies. Following a virtual screening campaign on the most relevant viral proteins, we identified the drug raloxifene, a known Selective Estrogen Receptor Modulator (SERM), as a new potential agent to treat mild-to-moderate COVID-19 patients. In this paper we report a comprehensive pharmacological characterization of raloxifene in relevant in vitro models of COVID-19, specifically in Vero E6 and Calu-3 cell lines infected with SARS-CoV-2. A large panel of the most common SARS-CoV-2 variants isolated in Europe, United Kingdom, Brazil, South Africa and India was tested to demonstrate the drug's ability in contrasting the viral cytopathic effect (CPE). Literature data support a beneficial effect by raloxifene against the viral infection due to its ability to interact with viral proteins and activate protective estrogen receptor-mediated mechanisms in the host cells. Mechanistic studies here reported confirm the significant affinity of raloxifene for the Spike protein, as predicted by in silico studies, and show that the drug treatment does not directly affect Spike/ACE2 interaction or viral internalization in infected cell lines. Interestingly, raloxifene can counteract Spike-mediated ADAM17 activation in human pulmonary cells, thus providing new insights on its mechanism of action. A clinical study in mild to moderate COVID-19 patients (NCT05172050) has been recently completed. Our contribution to evaluate raloxifene results on SARS-CoV-2 variants, and the interpretation of the mechanisms of action will be key elements to better understand the trial results, and to design new clinical studies aiming to evaluate the potential development of raloxifene in this indication.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Humans , Pandemics , Raloxifene Hydrochloride/pharmacology , Raloxifene Hydrochloride/therapeutic use , Spike Glycoprotein, Coronavirus/metabolism
3.
Clin Infect Dis ; 2022 May 24.
Article in English | MEDLINE | ID: covidwho-1860837

ABSTRACT

BACKGROUND: Patients with solid or hematological tumors, neurological and immune-inflammatory disorders are potentially fragile subjects at increased risk of experiencing severe COVID-19 and an inadequate response to SARS-CoV-2 vaccination. METHODS: We designed a prospective Italian multicentrer study to assess humoral and T-cell responses to SARS-CoV-2 vaccination in patients (n = 378) with solid tumors (ST), hematological malignancies (HM), neurological disorders (ND) and immunorheumatological diseases (ID). A group of healthy controls was also included. We analyzed the immunogenicity of the primary vaccination schedule and booster dose. RESULTS: The overall seroconversion rate in patients after 2 doses was 62.1%. Significantly lower rates were observed in HM (52.4%) and ID (51.9%) than in ST (95.6%) and ND (70.7%); a lower median antibody level was detected in HM and ID versus ST and ND (P < 0.0001). Similar rates of patients with a positive SARS-CoV-2 T-cell response were found in all disease groups, with a higher level observed in ND. The booster dose improved the humoral response in all disease groups, although to a lesser extent in HM patients, while the T-cell response increased similarly in all groups. In the multivariable logistic model, independent predictors of seroconversion were disease subgroup, treatment type and age. Ongoing treatment known to affect the immune system was associated with the worst humoral response to vaccination (P < 0.0001) but had no effect on T-cell responses. CONCLUSIONS: Immunosuppressive treatment more than disease type per se is a risk factor for a low humoral response after vaccination. The booster dose can improve both humoral and T-cell responses.

4.
Vaccines ; 10(5):817, 2022.
Article in English | MDPI | ID: covidwho-1857399

ABSTRACT

The new Omicron variant of SARS-CoV-2, first identified in November 2021, is rapidly spreading all around the world. Omicron has become the dominant variant of SARS-CoV-2. There are many ongoing studies evaluating the effectiveness of existing vaccines. Studies on the neutralizing activity of vaccinated sera against the Omicron variant are currently being carried out in many laboratories. In this study, we have shown the neutralizing activity of sera against the SARS-CoV-2 Omicron variant compared to the reference Wuhan D614G variant in individuals vaccinated with two doses of Sputnik V up to 6 months after vaccination and in individuals who experienced SARS-CoV-2 infection either before or after vaccination. As a control to our study we also measured neutralizing antibody titers in individuals vaccinated with two doses of BNT162b2. The decrease in NtAb titers to the Omicron variant was 8.1-fold for the group of Sputnik V-vaccinated individuals. When the samples were stratified for the time period after vaccination, a 7.6-fold or 8.8-fold decrease in NtAb titers was noticed after up to 3 and 3-to-6 months after vaccination. We observed a 6.7- and 5-fold decrease in Sputnik V-vaccinated individuals experiencing asymptomatic or symptomatic infection, respectively. These results highlight the observation that the decrease in NtAb to the SARS-CoV-2 Omicron variant compared to the Wuhan variant occurs for different COVID-19 vaccines in use, with some showing no neutralization at all, confirming the necessity of a third booster vaccination.

5.
Sci Rep ; 12(1): 6687, 2022 04 23.
Article in English | MEDLINE | ID: covidwho-1805648

ABSTRACT

Vaccine is the main public health measure to reduce SARS-CoV-2 transmission and hospitalization, and a massive scientific effort worldwide resulted in the rapid development of effective vaccines. This work aimed to define the dynamics and persistence of humoral and cell-mediated immune response in Health Care Workers who received a two-dose BNT162b2-mRNA vaccination. Serological response was evaluated by quantifying anti-RBD and neutralizing antibodies while cell-mediated response was performed by a whole blood test quantifying Th1 cytokines (IFN-γ, TNF-α, IL-2) produced in response to Spike peptides. BNT162b2-mRNA vaccine induced both humoral and cell-mediated immune response against Spike in all HCW early after the second dose. After 12 weeks from vaccination, the titer of anti-RBD antibodies as well as their neutralization function decreased while the Spike-specific T-cells persisted at the same level as soon after vaccine boost. Of note, a correlation between cellular and humoral response persevered, suggesting the persistence of a coordinated immune response. The long lasting cell-mediated immune response after 3 months from vaccination highlight its importance in the maintaining of specific immunity able to expand again to fight eventual new antigen encountering.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunity, Cellular , Immunity, Humoral , T-Lymphocytes , Vaccination , Vaccines, Synthetic
6.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-317754

ABSTRACT

Background: The pathogenesis of SARS-CoV-2 remains to be defined. Elucidating SARS-CoV-2 cellular localization within cells and its cytopathic effects requires definition. We performed a comparative ultrastructural study of SARS-CoV-2 infection of Vero-6 cells and lung from COVID-19 patients. Main findings: SARS-CoV-2 induces rapid ultrastructural changes and death in Vero cells. Ultrastructural changes in SARS-CoV-2 infection differ from those in SARS-CoV-1. Type II pneumocytes in lung tissue showed prominent altered morphological features with numerous vacuoles and swollen mitochondria with presence of abundant lipid droplets. The accumulation of lipid droplets was the most striking finding we observed in cultured cells and in infected pneumocytes. Virus particles were also found associated with lipo-lysosomes suggesting that they can play an important step in virus assembly. Interpretation: The cytopathology of SARS-CoV-2 appears to be different to that caused by SARS-CoV-1. Our findings highlight important open topics which may represent future targets to contrast the pathogenicity of SARS-CoV-2.

7.
iScience ; 25(2): 103854, 2022 Feb 18.
Article in English | MEDLINE | ID: covidwho-1683209

ABSTRACT

To assess the cross-talk between immune cells and respiratory tract during SARS-CoV-2 infection, we analyzed the relationships between the inflammatory response induced by SARS-CoV-2 replication and immune cells phenotype in a reconstituted organotypic human airway epithelium (HAE). The results indicated that immune cells failed to inhibit SARS-CoV-2 replication in the HAE model. In contrast, immune cells strongly affected the inflammatory profile induced by SARS-CoV-2 infection, dampening the production of several immunoregulatory/inflammatory signals (e.g., IL-35, IL-27, and IL-34). Moreover, these mediators were found inversely correlated with innate immune cell frequency (NK and γδ T cells) and directly with CD8 T cells. The enriched signals associated with NK and CD8 T cells highlighted the modulation of pathways induced by SARS-CoV-2 infected HAE. These findings are useful to depict the cell-cell communication mechanisms necessary to develop novel therapeutic strategies aimed to promote an effective immune response.

8.
Neurology ; 98(5): e541-e554, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1673960

ABSTRACT

BACKGROUND AND OBJECTIVES: To evaluate the immune-specific response after full severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination of patients with multiple sclerosis (MS) treated with different disease-modifying drugs by the detection of both serologic and T-cell responses. METHODS: Healthcare workers (HCWs) and patients with MS, having completed the 2-dose schedule of an mRNA-based vaccine against SARS-CoV-2 in the past 2-4 weeks, were enrolled from 2 parallel prospective studies conducted in Rome, Italy, at the National Institute for Infectious diseases Spallanzani-IRCSS and San Camillo Forlanini Hospital. Serologic response was evaluated by quantifying the region-binding domain (RBD) and neutralizing antibodies. Cell-mediated response was analyzed by a whole-blood test quantifying interferon (IFN)-γ response to spike peptides. Cells responding to spike stimulation were identified by fluorescence-activated cell sorting analysis. RESULTS: We prospectively enrolled 186 vaccinated individuals: 78 HCWs and 108 patients with MS. Twenty-eight patients with MS were treated with IFN-ß, 35 with fingolimod, 20 with cladribine, and 25 with ocrelizumab. A lower anti-RBD antibody response rate was found in patients treated with ocrelizumab (40%, p < 0.0001) and fingolimod (85.7%, p = 0.0023) compared to HCWs and patients treated with cladribine or IFN-ß. Anti-RBD antibody median titer was lower in patients treated with ocrelizumab (p < 0.0001), fingolimod (p < 0.0001), and cladribine (p = 0.010) compared to HCWs and IFN-ß-treated patients. Serum neutralizing activity was present in all the HCWs tested and in only a minority of the fingolimod-treated patients (16.6%). T-cell-specific response was detected in the majority of patients with MS (62%), albeit with significantly lower IFN-γ levels compared to HCWs. The lowest frequency of T-cell response was found in fingolimod-treated patients (14.3%). T-cell-specific response correlated with lymphocyte count and anti-RBD antibody titer (ρ = 0.554, p < 0.0001 and ρ = 0.255, p = 0.0078 respectively). IFN-γ T-cell response was mediated by both CD4+ and CD8+ T cells. DISCUSSION: mRNA vaccines induce both humoral and cell-mediated specific immune responses against spike peptides in all HCWs and in the majority of patients with MS. These results carry relevant implications for managing vaccinations, suggesting promoting vaccination in all treated patients with MS. CLASSIFICATION OF EVIDENCE: This study provides Class III data that SARS-CoV-2 mRNA vaccination induces both humoral and cell-mediated specific immune responses against viral spike proteins in a majority of patients with MS.


Subject(s)
COVID-19 , Multiple Sclerosis , Antibodies, Viral , CD8-Positive T-Lymphocytes , COVID-19 Vaccines , Humans , Immunity , Multiple Sclerosis/drug therapy , Prospective Studies , RNA, Messenger , SARS-CoV-2 , Vaccination
9.
Front Med (Lausanne) ; 8: 815870, 2021.
Article in English | MEDLINE | ID: covidwho-1674353

ABSTRACT

BACKGROUND: Vaccines for coronavirus disease 2019 (COVID-19) are proving to be very effective in preventing severe illness; however, although rare, post-vaccine infections have been reported. The present study focuses on virological and serological features of 94 infections that occurred in Lazio Region (Central Italy) between 27 December 2020, and 30 March 2021, after one or two doses of mRNA BNT162b2 vaccine. METHODS: We evaluated clinical features, virological (viral load; viral infectiousness; genomic characterisation), and serological (anti-nucleoprotein Ig; anti-Spike RBD IgG; neutralising antibodies, nAb) characteristics of 94 post-vaccine infections at the time of diagnosis. Nasopharyngeal swabs (NPSs) and serum samples were collected in the framework of the surveillance activities on SARS-CoV-2 variants established in Lazio Region (Central Italy) and analysed at the National Institute for Infectious Diseases "L. Spallanzani" in Rome. RESULTS: The majority (92.6%) of the post-vaccine infections showed pauci/asymptomatic or mild clinical course, with symptoms and hospitalisation rate significantly less frequent in patients infected after full vaccination course as compared to patients who received a single dose vaccine. Although differences were not statistically significant, viral loads and isolation rates were lower in NPSs from patients infected after receiving two vaccine doses as compared to patients with one dose. Most cases (84%) had nAb in serum at the time of infection diagnosis, which is a sub-group of vaccinees, were found similarly able to neutralise Alpha and Gamma variants. Asymptomatic individuals showed higher nAb titres as compared to symptomatic cases (median titre: 1:120 vs. 1:40, respectively). Finally, the proportion of post-vaccine infections attributed either to Alpha and Gamma variants was similar to the proportion observed in the contemporary unvaccinated population in the Lazio region, and mutational analysis did not reveal enrichment of a defined set of Spike protein substitutions depending on the vaccination status. CONCLUSION: Our study conducted using real-life data, emphasised the importance of monitoring vaccine breakthrough infections, through the characterisation of virological, immunological, and clinical features associated with these events, in order to tune prevention measures in the next phase of the COVID-19 pandemic.

10.
Viruses ; 14(2)2022 02 02.
Article in English | MEDLINE | ID: covidwho-1667350

ABSTRACT

To investigate the dynamic association among binding and functional antibodies in health-care-workers receiving two doses of BNT162b2 mRNA COVID-19-vaccine, SARS-CoV-2 anti-RBD IgG, anti-Trimeric-S IgG, and neutralizing antibodies (Nabs) were measured in serum samples collected at 2 weeks, 3 months, and 6 months from full vaccination. Despite the high correlation, results for anti-RBD and anti-Trimeric S IgG were numerically different even after recalculation to BAU/mL following WHO standards indications. Moreover, after a peak response at 2 weeks, anti-RBD IgG levels showed a 4.5 and 13 fold decrease at 3 and 6 months, respectively, while the anti-Trimeric S IgG presented a less pronounced decay of 2.8 and 4.7 fold. Further different dynamics were observed for Nabs titers, resulting comparable at 3 and 6 months from vaccination. We also demonstrated that at NAbs titers ≥40, the area under the receiver operating characteristic curve and the optimal cutoff point decreased with time from vaccination for both anti-RBD and anti-Trimeric S IgG. The mutating relation among the anti-RBD IgG, anti-Trimeric S IgG, and neutralizing antibodies are indicative of antibody maturation upon vaccination. The lack of standardized laboratory procedures is one factor interfering with the definition of a correlate of protection from COVID-19.


Subject(s)
Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , COVID-19/immunology , Immunoglobulin G/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Adult , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Binding Sites, Antibody , COVID-19/prevention & control , Cohort Studies , Female , Follow-Up Studies , Health Personnel/statistics & numerical data , Humans , Immunity, Humoral , Immunoglobulin G/blood , Immunoglobulin G/immunology , Kinetics , Longitudinal Studies , Male , Middle Aged , Vaccination
11.
iScience ; 2022.
Article in English | EuropePMC | ID: covidwho-1660975

ABSTRACT

To assess the cross talk between immune cells and respiratory tract during SARS-CoV-2 infection, we analysed the relationships between the inflammatory response induced by SARS-CoV-2 replication and immune cells phenotype in a reconstituted organotypic human airway epithelium (HAE). The results indicated that immune cells failed to inhibit SARS-CoV-2 replication in HAE model. In contrast, immune cells strongly affected the inflammatory profile induced by SARS-CoV-2 infection, dampening the production of several immunoregulatory/inflammatory signals (e.g., IL-35, IL-27 and IL-34). Moreover, these mediators were found inversely correlated with innate immune cell frequency (NK and γδ T cells) and directly with CD8 T cells. The enriched signals associated with NK and CD8 T cells highlighted the modulation of pathways induced by SARS-CoV-2 infected HAE. These findings are useful to depict the cell-cell communication mechanisms necessary to develop novel therapeutic strategies aimed to promote an effective immune response. Graphical

12.
Front Mol Biosci ; 8: 752616, 2021.
Article in English | MEDLINE | ID: covidwho-1572298

ABSTRACT

Although lung fibrosis has a major impact in COVID-19 disease, its pathogenesis is incompletely understood. In particular, no direct evidence of pleura implication in COVID-19-related fibrotic damage has been reported so far. In this study, the expression of epithelial cytokeratins and Wilms tumor 1 (WT1), specific markers of mesothelial cells (MCs), was analyzed in COVID-19 and unrelated pleura autoptic samples. SARS-CoV-2 replication was analyzed by RT-PCR and confocal microscopy in MeT5A, a pleura MC line. SARS-CoV-2 receptors were analyzed by RT-PCR and western blot. Inflammatory cytokines from the supernatants of SARS-CoV-2-infected MeT5A cells were analysed by Luminex and ELLA assays. Immunohistochemistry of COVID-19 pleura patients highlighted disruption of pleura monolayer and fibrosis of the sub-mesothelial stroma, with the presence of MCs with fibroblastoid morphology in the sub-mesothelial stroma, but no evidence of direct infection in vivo. Interestingly, we found evidence of ACE2 expression in MCs from pleura of COVID-19 patients. In vitro analysis shown that MeT5A cells expressed ACE2, TMPRSS2, ADAM17 and NRP1, plasma membrane receptors implicated in SARS-CoV-2 cell entry and infectivity. Moreover, MeT5A cells sustained SARS-CoV-2 replication and productive infection. Infected MeT5A cells produced interferons, inflammatory cytokines and metalloproteases. Overall, our data highlight the potential role of pleura MCs as promoters of the fibrotic reaction and regulators of the immune response upon SARS-CoV-2 infection.

13.
J Transl Med ; 19(1): 501, 2021 12 07.
Article in English | MEDLINE | ID: covidwho-1560461

ABSTRACT

BACKGROUND: Omics data, driven by rapid advances in laboratory techniques, have been generated very quickly during the COVID-19 pandemic. Our aim is to use omics data to highlight the involvement of specific pathways, as well as that of cell types and organs, in the pathophysiology of COVID-19, and to highlight their links with clinical phenotypes of SARS-CoV-2 infection. METHODS: The analysis was based on the domain model, where for domain it is intended a conceptual repository, useful to summarize multiple biological pathways involved at different levels. The relevant domains considered in the analysis were: virus, pathways and phenotypes. An interdisciplinary expert working group was defined for each domain, to carry out an independent literature scoping review. RESULTS: The analysis revealed that dysregulated pathways of innate immune responses, (i.e., complement activation, inflammatory responses, neutrophil activation and degranulation, platelet degranulation) can affect COVID-19 progression and outcomes. These results are consistent with several clinical studies. CONCLUSIONS: Multi-omics approach may help to further investigate unknown aspects of the disease. However, the disease mechanisms are too complex to be explained by a single molecular signature and it is necessary to consider an integrated approach to identify hallmarks of severity.


Subject(s)
COVID-19 , Humans , Immunity, Innate , Pandemics , SARS-CoV-2
14.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-294112

ABSTRACT

Background: Data on SARS-CoV-2 vaccine immunogenicity in PLWH are currently limited. Aim of the study was to investigate immunogenicity according to current CD4 T-cell count and predictive role on immune response to vaccination in PLWH.<br><br>Methods: PLWH attending a single-center SARS-CoV-2 vaccination program in Italy, were included in a prospective evaluation for immunogenicity after receiving BNT162b2 or mRNA-1273. PLWH were stratified according to current CD4 T-cell count (severe immunodeficiency, SID: <200/mm 3 ;minor immunodeficiency, MID: 200-500/mm 3 ;no immunodeficiency, NID: >500/mm 3 ). RBD-binding IgG, SARS-CoV-2 neutralizing antibodies (nAbs) and cell-mediated (IFN-γ/IL-2) immune response were measured. As control group, not-matched HIV-negative healthcare workers (HCWs) were used.<br><br>Findings: Participants were 166 PLWH (SID=32;MID=56;NID=78) on ART. After 1 month from the booster dose, detectable RBD-binding IgG in 86.7% of SID, in 100% of MID, in 98.7% of NID (SID vs NID, p=0.021) and nAbs (titre ≥1:10) in 70.0%, 88.2% and 93.1%, respectively (SID vs NID, p=0.002), were elicited. Compared to NID, magnitude of anti-RBD, nAbs and IFN-γ production was significantly lower in SID and comparable in MID. After adjusting for confounders, current CD4 T-cell <200/mm 3 significantly predicted a poor magnitude of anti-RDB, nAbs and IFN-γ production. As compared with HCWs, SID elicited a consistently reduced immunogenicity for all parameters, MID only a reduced RBD-binding antibody response, NID a comparable response to HIV-negative controls for all parameters.<br><br>Interpretation: Neutralizing and cell-mediated immune response against SARS-CoV-2 were elicited in most of PLWH receiving ART, albeit significantly poorer in those with current CD4 T-cell <200/mm 3 versus those with CD4 T-cell >500/mm 3 and HIV-negative controls. A marginal decreased immunogenicity than HCWs was also observed in PLWH with CD4 T-cell 200-500/mm 3 , whereas immune response elicited in PLWH with a CD4 T-cell >500/mm 3 was comparable to HIV-negative population.<br><br>Funding: Italian Ministry of Health;European Commission, European Virus Archive – GLOBAL.<br><br>Declaration of Interest: None to declare. <br><br>Ethical Approval: The study was approved by the Scientific Committee of the Italian Drug Agency (AIFA) and by the Ethical Committee of the Lazzaro Spallanzani Institute, as National Review Board for COVID-19 pandemic in Italy (approval number 323/2021).

15.
Neurology ; 98(5): e541-e554, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1528702

ABSTRACT

BACKGROUND AND OBJECTIVES: To evaluate the immune-specific response after full severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination of patients with multiple sclerosis (MS) treated with different disease-modifying drugs by the detection of both serologic and T-cell responses. METHODS: Healthcare workers (HCWs) and patients with MS, having completed the 2-dose schedule of an mRNA-based vaccine against SARS-CoV-2 in the past 2-4 weeks, were enrolled from 2 parallel prospective studies conducted in Rome, Italy, at the National Institute for Infectious diseases Spallanzani-IRCSS and San Camillo Forlanini Hospital. Serologic response was evaluated by quantifying the region-binding domain (RBD) and neutralizing antibodies. Cell-mediated response was analyzed by a whole-blood test quantifying interferon (IFN)-γ response to spike peptides. Cells responding to spike stimulation were identified by fluorescence-activated cell sorting analysis. RESULTS: We prospectively enrolled 186 vaccinated individuals: 78 HCWs and 108 patients with MS. Twenty-eight patients with MS were treated with IFN-ß, 35 with fingolimod, 20 with cladribine, and 25 with ocrelizumab. A lower anti-RBD antibody response rate was found in patients treated with ocrelizumab (40%, p < 0.0001) and fingolimod (85.7%, p = 0.0023) compared to HCWs and patients treated with cladribine or IFN-ß. Anti-RBD antibody median titer was lower in patients treated with ocrelizumab (p < 0.0001), fingolimod (p < 0.0001), and cladribine (p = 0.010) compared to HCWs and IFN-ß-treated patients. Serum neutralizing activity was present in all the HCWs tested and in only a minority of the fingolimod-treated patients (16.6%). T-cell-specific response was detected in the majority of patients with MS (62%), albeit with significantly lower IFN-γ levels compared to HCWs. The lowest frequency of T-cell response was found in fingolimod-treated patients (14.3%). T-cell-specific response correlated with lymphocyte count and anti-RBD antibody titer (ρ = 0.554, p < 0.0001 and ρ = 0.255, p = 0.0078 respectively). IFN-γ T-cell response was mediated by both CD4+ and CD8+ T cells. DISCUSSION: mRNA vaccines induce both humoral and cell-mediated specific immune responses against spike peptides in all HCWs and in the majority of patients with MS. These results carry relevant implications for managing vaccinations, suggesting promoting vaccination in all treated patients with MS. CLASSIFICATION OF EVIDENCE: This study provides Class III data that SARS-CoV-2 mRNA vaccination induces both humoral and cell-mediated specific immune responses against viral spike proteins in a majority of patients with MS.


Subject(s)
COVID-19 , Multiple Sclerosis , Antibodies, Viral , CD8-Positive T-Lymphocytes , COVID-19 Vaccines , Humans , Immunity , Multiple Sclerosis/drug therapy , Prospective Studies , RNA, Messenger , SARS-CoV-2 , Vaccination
16.
NPJ Vaccines ; 6(1): 131, 2021 Nov 04.
Article in English | MEDLINE | ID: covidwho-1503480

ABSTRACT

Here we report on the humoral and cellular immune response in eight volunteers who autonomously chose to adhere to the Italian national COVID-19 vaccination campaign more than 3 months after receiving a single-administration GRAd-COV2 vaccine candidate in the context of the phase-1 clinical trial. We observed a clear boost of both binding/neutralizing antibodies as well as T-cell responses upon receipt of the heterologous BNT162b2 or ChAdOx1-nCOV19 vaccines. These results, despite the limitation of the small sample size, support the concept that a single dose of an adenoviral vaccine may represent an ideal tool to effectively prime a balanced immune response, which can be boosted to high levels by a single dose of a different vaccine platform.

17.
Sci Transl Med ; 14(627): eabj1996, 2022 Jan 12.
Article in English | MEDLINE | ID: covidwho-1483986

ABSTRACT

Safe and effective vaccines against coronavirus disease 2019 (COVID-19) are essential for ending the ongoing pandemic. Although impressive progress has been made with several COVID-19 vaccines already approved, it is clear that those developed so far cannot meet the global vaccine demand alone. We describe a COVID-19 vaccine based on a replication-defective gorilla adenovirus expressing the stabilized prefusion severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein named GRAd-COV2. We assessed the safety and immunogenicity of a single-dose regimen of this vaccine in healthy younger and older adults to select the appropriate dose for each age group. For this purpose, a phase 1, dose-escalation, open-labeled trial was conducted including 90 healthy participants (45 aged 18 to 55 years old and 45 aged 65 to 85 years old) who received a single intramuscular administration of GRAd-COV2 at three escalating doses. Local and systemic adverse reactions were mostly mild or moderate and of short duration, and no serious adverse events were reported. Four weeks after vaccination, seroconversion to spike protein and receptor binding domain was achieved in 43 of 44 young volunteers and in 45 of 45 older participants. Consistently, neutralizing antibodies were detected in 42 of 44 younger-age and 45 of 45 older-age volunteers. In addition, GRAd-COV2 induced a robust and T helper 1 cell (TH1)­skewed T cell response against the spike protein in 89 of 90 participants from both age groups. Overall, the safety and immunogenicity data from the phase 1 trial support the further development of this vaccine.


Subject(s)
Adenovirus Vaccines , COVID-19 , Adenoviridae , Aged , Animals , COVID-19 Vaccines , Gorilla gorilla , Humans , SARS-CoV-2
18.
Mol Ther ; 30(1): 311-326, 2022 01 05.
Article in English | MEDLINE | ID: covidwho-1450246

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 has made the development of safe and effective vaccines a critical priority. To date, four vaccines have been approved by European and American authorities for preventing COVID-19, but the development of additional vaccine platforms with improved supply and logistics profiles remains a pressing need. Here we report the preclinical evaluation of a novel COVID-19 vaccine candidate based on the electroporation of engineered, synthetic cDNA encoding a viral antigen in the skeletal muscle. We constructed a set of prototype DNA vaccines expressing various forms of the SARS-CoV-2 spike (S) protein and assessed their immunogenicity in animal models. Among them, COVID-eVax-a DNA plasmid encoding a secreted monomeric form of SARS-CoV-2 S protein receptor-binding domain (RBD)-induced the most potent anti-SARS-CoV-2 neutralizing antibody responses (including against the current most common variants of concern) and a robust T cell response. Upon challenge with SARS-CoV-2, immunized K18-hACE2 transgenic mice showed reduced weight loss, improved pulmonary function, and lower viral replication in the lungs and brain. COVID-eVax conferred significant protection to ferrets upon SARS-CoV-2 challenge. In summary, this study identifies COVID-eVax as an ideal COVID-19 vaccine candidate suitable for clinical development. Accordingly, a combined phase I-II trial has recently started.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunization/methods , Models, Animal , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA/administration & dosage , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/genetics , COVID-19/virology , Female , Ferrets , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Protein Domains , Rats, Sprague-Dawley
19.
Front Immunol ; 12: 690322, 2021.
Article in English | MEDLINE | ID: covidwho-1403471

ABSTRACT

A convalescent, non-severe, patient with COVID-19 was enrolled as a hyper-immune plasma voluntary donor by the Immuno-Hematology and Transfusion Unit of the Regina Elena National Cancer Institute in Rome, under the TSUNAMI national study criteria. During a nearly 6-month period (May-October 2020), the patient was closely monitored and underwent four hyperimmune plasma collections. Serum SARS-CoV-2 (anti-S + anti-N) IgG and IgM, anti-S1 IgA, and neutralizing titers (NTs) were measured. Anti-SARS-CoV-2 antibody levels steadily decreased. No correlation was found between anti-S/anti-N IgG and IgM levels and viral NT, measured by either a microneutralization test or the surrogate RBD/ACE2-binding inhibition test. Conversely, NTs directly correlated with anti-S1 IgA levels. Hyperimmune donor plasma, administered to five SARS-CoV-2 patients with persistent, severe COVID-19 symptoms, induced short-term clinical and pathological improvement. Reported data suggest that high NTs can persist longer than expected, thus widening hyperimmune plasma source, availability, and potential use. In vitro RBD/ACE2-binding inhibition test is confirmed as a convenient surrogate index for neutralizing activity and patients' follow-up, suitable for clinical settings where biosafety level 3 facilities are not available. IgA levels may correlate with serum neutralizing activity and represent a further independent index for patient evaluation.


Subject(s)
Antibodies, Neutralizing/administration & dosage , Antibodies, Viral/administration & dosage , COVID-19/therapy , SARS-CoV-2/immunology , Aged , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Blood Donors , COVID-19/immunology , COVID-19/virology , Humans , Immunization, Passive , Immunoglobulin A/administration & dosage , Immunoglobulin A/blood , Immunoglobulin A/immunology , Male , Middle Aged , Spike Glycoprotein, Coronavirus/immunology , Time Factors , Treatment Outcome
20.
Clin Chem Lab Med ; 59(12): 2010-2018, 2021 Nov 25.
Article in English | MEDLINE | ID: covidwho-1398962

ABSTRACT

OBJECTIVES: Simple and standardized methods to establish correlates to vaccine-elicited SARS-CoV-2 protection are needed. METHODS: An observational study on antibody response to a mRNA vaccine (Comirnaty) was performed on health care workers (V, n=120). Recovered COVID-19 patients (N, n=94) were used for comparison. Antibody response was evaluated by a quantitative anti-receptor binding domain IgG (anti-RBD) commercial assay and by virus microneutralization test (MNT), in order to establish a threshold of anti-RBD binding antibody units (BAU) able to predict a robust (≥1:80) MNT titer. RESULTS: Significant correlation between BAU and MNT titers was found in both V and N, being stronger in V (rs=0.91 and 0.57 respectively, p<0.001); a higher incremental trend starting from MNT titer 1:80 was observed in the V group. The 99% probability of high MNT titer (≥1:80) was reached at 1,814 and 3,564 BAU/mL, and the area under the receiver operating characteristic (ROC) curve was 0.99 (CI: 0.99-1.00) and 0.78 (CI: 0.67-0.86) in V and N, respectively. CONCLUSIONS: A threshold of 2,000 BAU/mL is highly predictive of strong MNT response in vaccinated individuals and may represent a good surrogate marker of protective response. It remains to be established whether the present results can be extended to BAU titers obtained with other assays.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunity, Humoral , Vaccines, Synthetic/immunology , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Area Under Curve , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Female , Health Personnel , Humans , Logistic Models , Male , Middle Aged , Neutralization Tests , ROC Curve , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/administration & dosage , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL