Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Pediatr Res ; 2021 Nov 08.
Article in English | MEDLINE | ID: covidwho-1506408

ABSTRACT

BACKGROUND: During the COVID-19 pandemic, thousands of pregnant women have been infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The implications of maternal SARS-CoV-2 infection on fetal and childhood well-being need to be characterized. We aimed to characterize the fetal immune response to maternal SARS-CoV-2 infection. METHODS: We performed single-cell RNA-sequencing and T cell receptor sequencing on cord blood mononuclear cells (CBMCs) from newborns of mothers infected with SARS-CoV-2 in the third trimester (cases) or without SARS-CoV-2 infection (controls). RESULTS: We identified widespread gene expression changes in CBMCs from cases, including upregulation of interferon-stimulated genes and major histocompatibility complex genes in CD14+ monocytes, transcriptional changes suggestive of activation of plasmacytoid dendritic cells, and activation and exhaustion of natural killer cells. Lastly, we observed fetal T cell clonal expansion in cases compared to controls. CONCLUSIONS: As none of the infants were infected with SARS-CoV-2, our results suggest that maternal SARS-CoV-2 infection might modulate the fetal immune system in the absence of vertical transmission. IMPACT: The implications of maternal SARS-CoV-2 infection in the absence of vertical transmission on fetal and childhood well-being are poorly understood. Maternal SARS-CoV-2 infection might modulate the fetal immune system in the absence of vertical transmission. This study raises important questions about the untoward effects of maternal SARS-CoV-2 on the fetus, even in the absence of vertical transmission.

2.
Cell ; 184(3): 628-642.e10, 2021 02 04.
Article in English | MEDLINE | ID: covidwho-1385216

ABSTRACT

SARS-CoV-2 infection causes more severe disease in pregnant women compared to age-matched non-pregnant women. Whether maternal infection causes changes in the transfer of immunity to infants remains unclear. Maternal infections have previously been associated with compromised placental antibody transfer, but the mechanism underlying this compromised transfer is not established. Here, we used systems serology to characterize the Fc profile of influenza-, pertussis-, and SARS-CoV-2-specific antibodies transferred across the placenta. Influenza- and pertussis-specific antibodies were actively transferred. However, SARS-CoV-2-specific antibody transfer was significantly reduced compared to influenza- and pertussis-specific antibodies, and cord titers and functional activity were lower than in maternal plasma. This effect was only observed in third-trimester infection. SARS-CoV-2-specific transfer was linked to altered SARS-CoV-2-antibody glycosylation profiles and was partially rescued by infection-induced increases in IgG and increased FCGR3A placental expression. These results point to unexpected compensatory mechanisms to boost immunity in neonates, providing insights for maternal vaccine design.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Immunoglobulin G/immunology , Maternal-Fetal Exchange/immunology , Placenta/immunology , Pregnancy Complications, Infectious/immunology , SARS-CoV-2/immunology , Adult , Female , Humans , Infant, Newborn , Pregnancy , Pregnancy Trimester, Third/immunology , Receptors, IgG/immunology , THP-1 Cells
4.
JAMA Netw Open ; 3(12): e2030455, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-985883

ABSTRACT

Importance: Biological data are lacking with respect to risk of vertical transmission and mechanisms of fetoplacental protection in maternal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Objective: To quantify SARS-CoV-2 viral load in maternal and neonatal biofluids, transplacental passage of anti-SARS-CoV-2 antibody, and incidence of fetoplacental infection. Design, Setting, and Participants: This cohort study was conducted among pregnant women presenting for care at 3 tertiary care centers in Boston, Massachusetts. Women with reverse transcription-polymerase chain reaction (RT-PCR) results positive for SARS-CoV-2 were recruited from April 2 to June 13, 2020, and follow-up occurred through July 10, 2020. Contemporaneous participants without SARS-CoV-2 infection were enrolled as a convenience sample from pregnant women with RT-PCR results negative for SARS-CoV-2. Exposures: SARS-CoV-2 infection in pregnancy, defined by nasopharyngeal swab RT-PCR. Main Outcomes and Measures: The main outcomes were SARS-CoV-2 viral load in maternal plasma or respiratory fluids and umbilical cord plasma, quantification of anti-SARS-CoV-2 antibodies in maternal and cord plasma, and presence of SARS-CoV-2 RNA in the placenta. Results: Among 127 pregnant women enrolled, 64 with RT-PCR results positive for SARS-CoV-2 (mean [SD] age, 31.6 [5.6] years) and 63 with RT-PCR results negative for SARS-CoV-2 (mean [SD] age, 33.9 [5.4] years) provided samples for analysis. Of women with SARS-CoV-2 infection, 23 (36%) were asymptomatic, 22 (34%) had mild disease, 7 (11%) had moderate disease, 10 (16%) had severe disease, and 2 (3%) had critical disease. In viral load analyses among 107 women, there was no detectable viremia in maternal or cord blood and no evidence of vertical transmission. Among 77 neonates tested in whom SARS-CoV-2 antibodies were quantified in cord blood, 1 had detectable immunoglobuilin M to nucleocapsid. Among 88 placentas tested, SARS-CoV-2 RNA was not detected in any. In antibody analyses among 37 women with SARS-CoV-2 infection, anti-receptor binding domain immunoglobin G was detected in 24 women (65%) and anti-nucleocapsid was detected in 26 women (70%). Mother-to-neonate transfer of anti-SARS-CoV-2 antibodies was significantly lower than transfer of anti-influenza hemagglutinin A antibodies (mean [SD] cord-to-maternal ratio: anti-receptor binding domain immunoglobin G, 0.72 [0.57]; anti-nucleocapsid, 0.74 [0.44]; anti-influenza, 1.44 [0.80]; P < .001). Nonoverlapping placental expression of SARS-CoV-2 receptors angiotensin-converting enzyme 2 and transmembrane serine protease 2 was noted. Conclusions and Relevance: In this cohort study, there was no evidence of placental infection or definitive vertical transmission of SARS-CoV-2. Transplacental transfer of anti-SARS-CoV-2 antibodies was inefficient. Lack of viremia and reduced coexpression and colocalization of placental angiotensin-converting enzyme 2 and transmembrane serine protease 2 may serve as protective mechanisms against vertical transmission.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Fetal Blood/immunology , Immunity, Maternally-Acquired/immunology , Infectious Disease Transmission, Vertical/statistics & numerical data , Placenta/metabolism , Pregnancy Complications, Infectious/immunology , SARS-CoV-2/immunology , Adult , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/blood , COVID-19/transmission , COVID-19 Serological Testing , Case-Control Studies , Cohort Studies , Coronavirus Nucleocapsid Proteins/immunology , Female , Fetal Blood/virology , Humans , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Infant, Newborn , Influenza A virus/immunology , Male , Phosphoproteins/immunology , Placenta/pathology , Placenta/virology , Pregnancy , Pregnancy Complications, Infectious/blood , Prospective Studies , RNA, Viral/metabolism , Receptors, Coronavirus/metabolism , Serine Endopeptidases/metabolism , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology , Viral Load
5.
BMC Med Res Methodol ; 20(1): 228, 2020 09 11.
Article in English | MEDLINE | ID: covidwho-751240

ABSTRACT

BACKGROUND: COVID-19, the disease caused by the highly infectious and transmissible coronavirus SARS-CoV-2, has quickly become a morbid global pandemic. Although the impact of SARS-CoV-2 infection in children is less clinically apparent, collecting high-quality biospecimens from infants, children, and adolescents in a standardized manner during the COVID-19 pandemic is essential to establish a biologic understanding of the disease in the pediatric population. This biorepository enables pediatric centers world-wide to collect samples uniformly to drive forward our understanding of COVID-19 by addressing specific pediatric and neonatal COVID-19-related questions. METHODS: A COVID-19 biospecimen collection study was implemented with strategic enrollment guidelines to include patients seen in urgent care clinics and hospital settings, neonates born to SARS-CoV-2 infected mothers, and asymptomatic children. The methodology described here, details the importance of establishing collaborations between the clinical and research teams to harmonize protocols for patient recruitment and sample collection, processing and storage. It also details modifications required for biobanking during a surge of the COVID-19 pandemic. RESULTS: Considerations and challenges facing enrollment of neonatal and pediatric cohorts are described. A roadmap is laid out for successful collection, processing, storage and database management of multiple pediatric samples such as blood, nasopharyngeal and oropharyngeal swabs, sputum, saliva, tracheal aspirates, stool, and urine. Using this methodology, we enrolled 327 participants, who provided a total of 972 biospecimens. CONCLUSIONS: Pediatric biospecimens will be key in answering questions relating to viral transmission by children, differences between pediatric and adult viral susceptibility and immune responses, the impact of maternal SARS-CoV-2 infection on fetal development, and factors driving the Multisystem Inflammatory Syndrome in Children. The specimens in this biorepository will allow necessary comparative studies between children and adults, help determine the accuracy of current pediatric viral testing techniques, in addition to, understanding neonatal exposure to SARS-CoV-2 infection and disease abnormalities. The successful establishment of a pediatric biorepository is critical to provide insight into disease pathogenesis, and subsequently, develop future treatment and vaccination strategies.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Specimen Handling/methods , Adolescent , COVID-19 , Child , Child, Preschool , Coronavirus Infections/immunology , Coronavirus Infections/transmission , Female , Fetal Development , Hospitalization , Humans , Infant , Infant, Newborn , Male , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/transmission , SARS-CoV-2
6.
BMC Med Res Methodol ; 20(1): 215, 2020 08 26.
Article in English | MEDLINE | ID: covidwho-730204

ABSTRACT

BACKGROUND: Collection of biospecimens is a critical first step to understanding the impact of COVID-19 on pregnant women and newborns - vulnerable populations that are challenging to enroll and at risk of exclusion from research. We describe the establishment of a COVID-19 perinatal biorepository, the unique challenges imposed by the COVID-19 pandemic, and strategies used to overcome them. METHODS: A transdisciplinary approach was developed to maximize the enrollment of pregnant women and their newborns into a COVID-19 prospective cohort and tissue biorepository, established on March 19, 2020 at Massachusetts General Hospital (MGH). The first SARS-CoV-2 positive pregnant woman was enrolled on April 2, and enrollment was expanded to SARS-CoV-2 negative controls on April 20. A unified enrollment strategy with a single consent process for pregnant women and newborns was implemented on May 4. SARS-CoV-2 status was determined by viral detection on RT-PCR of a nasopharyngeal swab. Wide-ranging and pregnancy-specific samples were collected from maternal participants during pregnancy and postpartum. Newborn samples were collected during the initial hospitalization. RESULTS: Between April 2 and June 9, 100 women and 78 newborns were enrolled in the MGH COVID-19 biorepository. The rate of dyad enrollment and number of samples collected per woman significantly increased after changes to enrollment strategy (from 5 to over 8 dyads/week, P < 0.0001, and from 7 to 9 samples, P < 0.01). The number of samples collected per woman was higher in SARS-CoV-2 negative than positive women (9 vs 7 samples, P = 0.0007). The highest sample yield was for placenta (96%), umbilical cord blood (93%), urine (99%), and maternal blood (91%). The lowest-yield sample types were maternal stool (30%) and breastmilk (22%). Of the 61 delivered women who also enrolled their newborns, fewer women agreed to neonatal blood compared to cord blood (39 vs 58, P < 0.0001). CONCLUSIONS: Establishing a COVID-19 perinatal biorepository required patient advocacy, transdisciplinary collaboration and creative solutions to unique challenges. This biorepository is unique in its comprehensive sample collection and the inclusion of a control population. It serves as an important resource for research into the impact of COVID-19 on pregnant women and newborns and provides lessons for future biorepository efforts.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnosis , Coronavirus Infections/psychology , Patient Participation , Pneumonia, Viral/diagnosis , Pneumonia, Viral/psychology , Pregnancy Complications, Infectious/diagnosis , Specimen Handling , Adult , COVID-19 , Female , Humans , Infant, Newborn , Pandemics , Patient Selection , Perinatal Care , Pregnancy , Pregnancy Complications, Infectious/psychology , SARS-CoV-2
7.
Res Sq ; 2020 Aug 10.
Article in English | MEDLINE | ID: covidwho-724933

ABSTRACT

Background : COVID-19, the disease caused by the highly infectious and transmissible coronavirus SARS-CoV-2, has quickly become a morbid global pandemic. Although the impact of SARS-CoV-2 infection in children is less clinically apparent, collecting high-quality biospecimens from infants, children and adolescents in a standardized manner during the COVID-19 pandemic is essential to establish a biologic understanding of the disease in the pediatric population. This biorepository enables pediatric centers world-wide to collect samples in a standardized manner to drive forward our understanding of COVID-19 by addressing specific pediatric and neonatal COVID-19-related questions. Methods : A broad study was implemented with strategic enrollment guidelines to include patients seen in urgent care clinics and hospital settings, neonates born to SARS-CoV-2 infected mothers, and asymptomatic children. The methodology described here, details the importance of establishing collaborations between the clinical and research teams to harmonize protocols for patient recruitment and sample collection, processing and storage. Results : Considerations and challenges facing enrollment of neonatal and pediatric cohorts are described. A roadmap is laid out for successful collection, processing, storage and database management of multiple pediatric samples such as blood, nasopharyngeal and oropharyngeal swabs, sputum, saliva, tracheal aspirates, stool, and urine. Using this methodology, we enrolled 327 participants, who provided a total of 972 biospecimens. Conclusions : Pediatric biospecimens will be key in answering questions relating to viral transmission by children, differences between pediatric and adult viral susceptibility, and, immune responses, the impact of maternal SARS-CoV-2 infection on fetal development, and factors driving the Multisystem Inflammatory Syndrome in Children. The specimens in this biorepository will allow necessary comparative studies between children and adults, help determine the accuracy of current pediatric viral testing techniques, in addition to, understanding neonatal exposure to SARS-CoV-2 infection and disease abnormalities. The successful establishment of a pediatric biorepository is critical to provide insight into disease pathogenesis, and subsequently, develop future treatment and vaccination strategies.

SELECTION OF CITATIONS
SEARCH DETAIL