Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Curr Med Chem ; 29(4): 635-665, 2022.
Article in English | MEDLINE | ID: covidwho-1742086

ABSTRACT

Due to its fast international spread and substantial mortality, the coronavirus disease COVID-19 evolved to a global threat. Since there is currently no causative drug against this viral infection available, science is striving for new drugs and other approaches to treat the new disease. Studies have shown that the cell entry of coronaviruses into host cells takes place through the binding of the viral spike (S) protein to cell receptors. Priming of the S protein occurs via hydrolysis by different host proteases. The inhibition of these proteases could impair the processing of the S protein, thereby affecting the interaction with the host-cell receptors and preventing virus cell entry. Hence, inhibition of these proteases could be a promising strategy for treatment against SARSCoV- 2. In this review, we discuss the current state of the art of developing inhibitors against the entry proteases furin, the transmembrane serine protease type-II (TMPRSS2), trypsin, and cathepsin L.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/drug therapy , Humans , Serine Proteases , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
2.
Curr Med Chem ; 29(4): 635-665, 2022.
Article in English | MEDLINE | ID: covidwho-1247734

ABSTRACT

Due to its fast international spread and substantial mortality, the coronavirus disease COVID-19 evolved to a global threat. Since there is currently no causative drug against this viral infection available, science is striving for new drugs and other approaches to treat the new disease. Studies have shown that the cell entry of coronaviruses into host cells takes place through the binding of the viral spike (S) protein to cell receptors. Priming of the S protein occurs via hydrolysis by different host proteases. The inhibition of these proteases could impair the processing of the S protein, thereby affecting the interaction with the host-cell receptors and preventing virus cell entry. Hence, inhibition of these proteases could be a promising strategy for treatment against SARSCoV- 2. In this review, we discuss the current state of the art of developing inhibitors against the entry proteases furin, the transmembrane serine protease type-II (TMPRSS2), trypsin, and cathepsin L.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/drug therapy , Humans , Serine Proteases , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
3.
ChemMedChem ; 16(2): 340-354, 2021 01 19.
Article in English | MEDLINE | ID: covidwho-1044678

ABSTRACT

Inhibition of coronavirus (CoV)-encoded papain-like cysteine proteases (PLpro ) represents an attractive strategy to treat infections by these important human pathogens. Herein we report on structure-activity relationships (SAR) of the noncovalent active-site directed inhibitor (R)-5-amino-2-methyl-N-(1-(naphthalen-1-yl)ethyl) benzamide (2 b), which is known to bind into the S3 and S4 pockets of the SARS-CoV PLpro . Moreover, we report the discovery of isoindolines as a new class of potent PLpro inhibitors. The studies also provide a deeper understanding of the binding modes of this inhibitor class. Importantly, the inhibitors were also confirmed to inhibit SARS-CoV-2 replication in cell culture suggesting that, due to the high structural similarities of the target proteases, inhibitors identified against SARS-CoV PLpro are valuable starting points for the development of new pan-coronaviral inhibitors.


Subject(s)
Antiviral Agents/pharmacology , Benzamides/pharmacology , Coronavirus 3C Proteases/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Isoindoles/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Benzamides/chemical synthesis , Benzamides/metabolism , Catalytic Domain , Chlorocebus aethiops , Coronavirus 3C Proteases/chemistry , Crystallography, X-Ray , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/metabolism , Isoindoles/chemical synthesis , Isoindoles/metabolism , Molecular Docking Simulation , Molecular Structure , Protein Binding , Structure-Activity Relationship , Vero Cells , Virus Replication/drug effects
4.
ChemMedChem ; 16(2): 340-354, 2021 01 19.
Article in English | MEDLINE | ID: covidwho-878190

ABSTRACT

Inhibition of coronavirus (CoV)-encoded papain-like cysteine proteases (PLpro ) represents an attractive strategy to treat infections by these important human pathogens. Herein we report on structure-activity relationships (SAR) of the noncovalent active-site directed inhibitor (R)-5-amino-2-methyl-N-(1-(naphthalen-1-yl)ethyl) benzamide (2 b), which is known to bind into the S3 and S4 pockets of the SARS-CoV PLpro . Moreover, we report the discovery of isoindolines as a new class of potent PLpro inhibitors. The studies also provide a deeper understanding of the binding modes of this inhibitor class. Importantly, the inhibitors were also confirmed to inhibit SARS-CoV-2 replication in cell culture suggesting that, due to the high structural similarities of the target proteases, inhibitors identified against SARS-CoV PLpro are valuable starting points for the development of new pan-coronaviral inhibitors.


Subject(s)
Antiviral Agents/pharmacology , Benzamides/pharmacology , Coronavirus 3C Proteases/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Isoindoles/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Benzamides/chemical synthesis , Benzamides/metabolism , Catalytic Domain , Chlorocebus aethiops , Coronavirus 3C Proteases/chemistry , Crystallography, X-Ray , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/metabolism , Isoindoles/chemical synthesis , Isoindoles/metabolism , Molecular Docking Simulation , Molecular Structure , Protein Binding , Structure-Activity Relationship , Vero Cells , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL