Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.25.481978

ABSTRACT

Detailed knowledge of cellular networks that are modulated by Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is needed to understand viral replication and host response. So far, transcriptomic analyses of interactions between SARS-CoV-2 and cells were performed on mixed populations of infected and uninfected cells or using single-cell RNA sequencing, both leading to inaccurate or low-resolution gene expression interpretations. Moreover, they generally focused on annotated messenger RNAs (mRNAs), ignoring other transcripts, such as long non-coding RNAs (lncRNAs) and unannotated RNAs. Here, we performed deep polyA+ transcriptome analyses of lung epithelial A549 cells infected with SARS-CoV-2, which were sorted based on the expression of the viral protein spike (S). To increase the sequencing depth and improve the robustness of the analysis, the samples were depleted of viral transcripts. Infection caused a massive reduction in mRNAs and lncRNAs, including transcripts coding for antiviral innate immune proteins, such as interferons (IFNs). This absence of IFN response probably explains the poor transcriptomic response of bystander cells co-cultured with spike positive (S+) ones. NF-{kappa}B and inflammatory response were among the pathways that escaped the global shutoff in S+ cells. In agreement with the RNA-seq analysis, inflammatory cytokines, but not IFNs, were produced and secreted by infected cells. Functional investigations revealed the proviral function of the NF-{kappa}B subunit p105/p50 and some of its known target genes, including IL32 and IL8, as well as the lncRNA ADIRF-AS1, which we identified as a novel NF-{kappa}B target gene. Thus, analyzing the polyA+ transcriptome of sorted populations of infected lung cells allowed unprecedented identification of cellular functions that are directly affected by infection and the recovery of coding and non-coding genes that contribute to SARS-CoV-2 replication.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.09.09.459577

ABSTRACT

SARS-CoV-2 infection results in impaired interferon response in severe COVID-19 patients. However, how SARS-CoV-2 interferes with host immune response is incompletely understood. Here, we sequenced small RNAs from SARS-CoV-2-infected human cells and identified a micro-RNA (miRNA) encoded in a recently evolved region of the viral genome. We show that the virus-encoded miRNA produces two miRNA isoforms in infected cells by the enzyme Dicer and they are loaded into Argonaute proteins. Moreover, the predominant miRNA isoform targets the 3UTR of interferon-stimulated genes and represses their expression in a miRNA-like fashion. Finally, the two viral miRNA isoforms were detected in nasopharyngeal swabs from COVID-19 patients. We propose that SARS-CoV-2 employs a virus-encoded miRNA to hijack the host miRNA machinery and evade the interferon-mediated immune response.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.20.453077

ABSTRACT

Establishment of the interferon (IFN)-mediated antiviral state provides a crucial initial line of defense against viral infection. Numerous genes that contribute to this antiviral state remain to be identified. Using a loss-of-function strategy, we screened an original library of 1156 siRNAs targeting 386 individual curated human genes in stimulated microglial cells infected with Zika virus (ZIKV), an emerging RNA virus that belongs to the flavivirus genus. The screen recovered twenty-one potential host proteins that modulate ZIKV replication in an IFN-dependent manner, including the previously known IFITM3 and LY6E. Further characterization contributed to delineate the spectrum of action of these genes towards other pathogenic RNA viruses, including Hepatitis C virus and SARS-CoV-2. Our data revealed that APOL3 acts as a proviral factor for ZIKV and several other related and unrelated RNA viruses. In addition, we showed that MTA2, a chromatin remodeling factor, possesses potent flavivirus-specific antiviral functions. Our work identified previously unrecognized genes that modulate the replication of RNA viruses in an IFN-dependent way, opening new perspectives to target weakness points in the life cycle of these viruses.


Subject(s)
Hepatitis C
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.21.20068858

ABSTRACT

It is of paramount importance to evaluate the prevalence of both asymptomatic and symptomatic cases of SARS-CoV-2 infection and their antibody response profile. Here, we performed a pilot study to assess the levels of anti-SARS-CoV-2 antibodies in samples taken from 491 pre- epidemic individuals, 51 patients from Hopital Bichat (Paris), 209 pauci-symptomatic individuals in the French Oise region and 200 contemporary Oise blood donors. Two in-house ELISA assays, that recognize the full-length nucleoprotein (N) or trimeric Spike (S) ectodomain were implemented. We also developed two novel assays: the S-Flow assay, which is based on the recognition of S at the cell surface by flow-cytometry, and the LIPS assay that recognizes diverse antigens (including S1 or N C- terminal domain) by immunoprecipitation. Overall, the results obtained with the four assays were similar, with differences in sensitivity that can be attributed to the technique and the antigen in use. High antibody titers were associated with neutralisation activity, assessed using infectious SARS-CoV- 2 or lentiviral-S pseudotypes. In hospitalized patients, seroconversion and neutralisation occurred on 5-14 days post symptom onset, confirming previous studies. Seropositivity was detected in 29% of pauci-symptomatic individuals within 15 days post-symptoms and 3 % of blood of healthy donors collected in the area of a cluster of COVID cases. Altogether, our assays allow for a broad evaluation of SARS-CoV2 seroprevalence and antibody profiling in different population subsets.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL