Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
PLOS Glob Public Health ; 3(5): e0001253, 2023.
Article in English | MEDLINE | ID: covidwho-2324817

ABSTRACT

Broad consent for future use, wherein researchers ask participants for permission to share participant-level data and samples collected within the study for purposes loosely related to the study objectives, is central to enabling ethical data and sample reuse. Ensuring that participants understand broad consent-related language is key to maintaining trust in the study and public health research. We conducted 52 cognitive interviews to explore cohort research participants' and their parents' understanding of the broad consent-related language in the University of California at Berkeley template informed consent (IC) form for biomedical research. Participants and their parents were recruited from long-standing infectious disease cohort studies in Nicaragua and Colombia and interviewed during the COVID-19 pandemic. We conducted semi-structured interviews to assess participants' agreement with the key concepts in the IC after clarifying them through the cognitive interview. Participants did not understand abstract concepts, including collecting and reusing genetic data. Participants wanted to learn about incidental findings, future users and uses. Trust in the research team and the belief that sharing could lead to new vaccines or treatments were critical to participant support for data and sample sharing. Participants highlighted the importance of data and sample sharing for COVID-19 response and equitable access to vaccines and treatments developed through sharing. Our findings on participants' understanding of broad consent and preferences for data and sample sharing can help inform researchers and ethics review committees working to enable ethical and equitable data and sample sharing.

2.
BMJ ; 378: e069881, 2022 07 12.
Article in English | MEDLINE | ID: covidwho-1932661

ABSTRACT

OBJECTIVE: To externally validate various prognostic models and scoring rules for predicting short term mortality in patients admitted to hospital for covid-19. DESIGN: Two stage individual participant data meta-analysis. SETTING: Secondary and tertiary care. PARTICIPANTS: 46 914 patients across 18 countries, admitted to a hospital with polymerase chain reaction confirmed covid-19 from November 2019 to April 2021. DATA SOURCES: Multiple (clustered) cohorts in Brazil, Belgium, China, Czech Republic, Egypt, France, Iran, Israel, Italy, Mexico, Netherlands, Portugal, Russia, Saudi Arabia, Spain, Sweden, United Kingdom, and United States previously identified by a living systematic review of covid-19 prediction models published in The BMJ, and through PROSPERO, reference checking, and expert knowledge. MODEL SELECTION AND ELIGIBILITY CRITERIA: Prognostic models identified by the living systematic review and through contacting experts. A priori models were excluded that had a high risk of bias in the participant domain of PROBAST (prediction model study risk of bias assessment tool) or for which the applicability was deemed poor. METHODS: Eight prognostic models with diverse predictors were identified and validated. A two stage individual participant data meta-analysis was performed of the estimated model concordance (C) statistic, calibration slope, calibration-in-the-large, and observed to expected ratio (O:E) across the included clusters. MAIN OUTCOME MEASURES: 30 day mortality or in-hospital mortality. RESULTS: Datasets included 27 clusters from 18 different countries and contained data on 46 914patients. The pooled estimates ranged from 0.67 to 0.80 (C statistic), 0.22 to 1.22 (calibration slope), and 0.18 to 2.59 (O:E ratio) and were prone to substantial between study heterogeneity. The 4C Mortality Score by Knight et al (pooled C statistic 0.80, 95% confidence interval 0.75 to 0.84, 95% prediction interval 0.72 to 0.86) and clinical model by Wang et al (0.77, 0.73 to 0.80, 0.63 to 0.87) had the highest discriminative ability. On average, 29% fewer deaths were observed than predicted by the 4C Mortality Score (pooled O:E 0.71, 95% confidence interval 0.45 to 1.11, 95% prediction interval 0.21 to 2.39), 35% fewer than predicted by the Wang clinical model (0.65, 0.52 to 0.82, 0.23 to 1.89), and 4% fewer than predicted by Xie et al's model (0.96, 0.59 to 1.55, 0.21 to 4.28). CONCLUSION: The prognostic value of the included models varied greatly between the data sources. Although the Knight 4C Mortality Score and Wang clinical model appeared most promising, recalibration (intercept and slope updates) is needed before implementation in routine care.


Subject(s)
COVID-19 , Models, Statistical , Data Analysis , Hospital Mortality , Humans , Prognosis
3.
BMJ Open ; 11(11): e052969, 2021 11 12.
Article in English | MEDLINE | ID: covidwho-1515303

ABSTRACT

INTRODUCTION: Causal methods have been adopted and adapted across health disciplines, particularly for the analysis of single studies. However, the sample sizes necessary to best inform decision-making are often not attainable with single studies, making pooled individual-level data analysis invaluable for public health efforts. Researchers commonly implement causal methods prevailing in their home disciplines, and how these are selected, evaluated, implemented and reported may vary widely. To our knowledge, no article has yet evaluated trends in the implementation and reporting of causal methods in studies leveraging individual-level data pooled from several studies. We undertake this review to uncover patterns in the implementation and reporting of causal methods used across disciplines in research focused on health outcomes. We will investigate variations in methods to infer causality used across disciplines, time and geography and identify gaps in reporting of methods to inform the development of reporting standards and the conversation required to effect change. METHODS AND ANALYSIS: We will search four databases (EBSCO, Embase, PubMed, Web of Science) using a search strategy developed with librarians from three universities (Heidelberg University, Harvard University, and University of California, San Francisco). The search strategy includes terms such as 'pool*', 'harmoniz*', 'cohort*', 'observational', variations on 'individual-level data'. Four reviewers will independently screen articles using Covidence and extract data from included articles. The extracted data will be analysed descriptively in tables and graphically to reveal the pattern in methods implementation and reporting. This protocol has been registered with PROSPERO (CRD42020143148). ETHICS AND DISSEMINATION: No ethical approval was required as only publicly available data were used. The results will be submitted as a manuscript to a peer-reviewed journal, disseminated in conferences if relevant, and published as part of doctoral dissertations in Global Health at the Heidelberg University Hospital.


Subject(s)
Delivery of Health Care , Research Design , Causality , Humans , San Francisco , Systematic Reviews as Topic
4.
PLoS One ; 16(4): e0250778, 2021.
Article in English | MEDLINE | ID: covidwho-1207637

ABSTRACT

INTRODUCTION: Pooling (or combining) and analysing observational, longitudinal data at the individual level facilitates inference through increased sample sizes, allowing for joint estimation of study- and individual-level exposure variables, and better enabling the assessment of rare exposures and diseases. Empirical studies leveraging such methods when randomization is unethical or impractical have grown in the health sciences in recent years. The adoption of so-called "causal" methods to account for both/either measured and/or unmeasured confounders is an important addition to the methodological toolkit for understanding the distribution, progression, and consequences of infectious diseases (IDs) and interventions on IDs. In the face of the Covid-19 pandemic and in the absence of systematic randomization of exposures or interventions, the value of these methods is even more apparent. Yet to our knowledge, no studies have assessed how causal methods involving pooling individual-level, observational, longitudinal data are being applied in ID-related research. In this systematic review, we assess how these methods are used and reported in ID-related research over the last 10 years. Findings will facilitate evaluation of trends of causal methods for ID research and lead to concrete recommendations for how to apply these methods where gaps in methodological rigor are identified. METHODS AND ANALYSIS: We will apply MeSH and text terms to identify relevant studies from EBSCO (Academic Search Complete, Business Source Premier, CINAHL, EconLit with Full Text, PsychINFO), EMBASE, PubMed, and Web of Science. Eligible studies are those that apply causal methods to account for confounding when assessing the effects of an intervention or exposure on an ID-related outcome using pooled, individual-level data from 2 or more longitudinal, observational studies. Titles, abstracts, and full-text articles, will be independently screened by two reviewers using Covidence software. Discrepancies will be resolved by a third reviewer. This systematic review protocol has been registered with PROSPERO (CRD42020204104).


Subject(s)
Communicable Diseases/epidemiology , COVID-19/epidemiology , Causality , Humans , Longitudinal Studies , Meta-Analysis as Topic , Systematic Reviews as Topic
SELECTION OF CITATIONS
SEARCH DETAIL