Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Topics in Antiviral Medicine ; 30(1 SUPPL):331-332, 2022.
Article in English | EMBASE | ID: covidwho-1880280

ABSTRACT

Background: SARS-CoV2 antibody testing is an important auxillary test especially for retrospective diagnosis or in patients with long COVID-19 or multisystem inflammatory syndrome of childhood. Epidemiological serology studies may also assist public health planning. Access to formal laboratory testing is not universal in many low-and middle-income (LMIC) countries and rapid lateral flow antibody tests are an attractive alternative. Performance of these tests has been inconsistent. A large-scale study was undertaken in South Africa, during the beta and delta waves, to assess the field-based performance of rapid point of care (POC) COVID-19 antibody tests. Methods: Symptomatic, ambulatory persons under investigation (PUIs) aged 18 years and older, presenting for SARS-CoV-2 diagnosis at public health facilities in three provinces, South Africa were enrolled at baseline. All patients completed a questionnaire regarding symptoms. Nasopharyngeal swabs were taken and processed for SARS-CoV-2 PCR testing using a GeneXpert (Cepheid, USA), or manual assay (ThermoFisher TaqPath assay or Seegene Allplex assay) on a real-time platform at routine accredited National Health Laboratory Service laboratories as per routine national protocols. Concomitantly, trained study staff performed three facility-based POC lateral flow antibody tests on a on a fingerstick sample and blood was collected for formal serology. POC tests were selected following a rapid in-laboratory evaluation. Asymptomatic contacts of people with confirmed COVID-19 were recruited into the asymptomatic study arm and rapid tests and PCR were performed. PCR and rapid positive patients and 500 negative controls were followed up at 5-14 days. Antibody tests were compared with formal serology performed on 2 platforms-Euroimmun (Euroimmun, Lubeck) IgA and IgG anti-S antibodies and Abbott Architect IgG test. Results: The sensitivity (S), specificity (Sp), positive (PPV) and negative predictive (NPV) values of tests for PUIs and contacts were calculated (Table 1)∗. Analyses using serology as a reference are forthcoming. Conclusion: Compared with PCR, performance of rapid POC COVID-19 antibody tests was poor with low sensitivity. This may reflect the patient cohort tested as humoral responses typically develop from day 7-14. The tests are unlikely to be useful for acute diagnosis but sensitivity may improve at later timepoints and further follow up data will be analysed by duration of symptom onset, severity of symptoms and wave (beta versus delta).

2.
Topics in Antiviral Medicine ; 30(1 SUPPL):331, 2022.
Article in English | EMBASE | ID: covidwho-1880279

ABSTRACT

Background: Access to SARS-CoV-2 polymerase chain reaction (PCR) testing is a bottleneck globally, especially in low-and middle-income countries (LMICs). Reliable point-of-care (POC) diagnostics for coronavirus disease 2019 (COVID-19) are cheaper and easier to scale-up than PCR especially in LMICs, and will facilitate interruption of transmission. We report the field-based effectiveness of rapid point-of-care (POC) antigen COVID-19 tests during the beta and delta waves, in South Africa. Methods: We enrolled symptomatic, ambulatory persons under investigation (PUIs) aged 18 years and older, presenting for SARS-CoV-2 diagnosis at public health facilities in three provinces, South Africa. All patients completed a questionnaire regarding symptoms. Nasopharyngeal swabs were taken and processed for SARS-CoV-2 PCR testing using either GeneXpert (Cepheid, USA), or with a manual assay (ThermoFisher TaqPath assay or Seegene Allplex assay) on a real-time PCR platform at routine, accredited National Health Laboratory Service laboratories, as per routine national protocols. Concomitantly, trained study staff performed three facility-based POC antigen tests on a nasal/nasopharyngeal swab, as recommended by the manufacturer. Asymptomatic contacts of people with confirmed COVID-19 were recruited into the asymptomatic study arm and rapid tests and PCR were performed. The sensitivity (S), specificity (Sp), positive (PPV) and negative predictive (NPV) values of tests for PUIs and contacts were calculated using PCR as the reference standard. Results: Between Oct 2020-2021 1816 participants were enrolled;472 (26%) tested PCR or rapid test positive;235 positives (49.8%) and 532 negatives were followed up at 5-14 days;574 asymptomatic contacts were enrolled, of which 21 (3.7%) were PCR positive. Performance of the three antigen tests are shown in Table 1∗. Conclusion: In a real world setting, during the beta and delta waves, compared with PCR the sensitivity of rapid antigen tests ranged from 35-68%. This may reflect low viral loads at diagnosis. Further work will compare antigen test performance in patients with high versus lower cycle threshold (Ct) values. Meanwhile, PCR testing capacity needs urgent scale-up in LMICs and improved POC diagnostics are needed to facilitate COVID-19 diagnosis in LMICs.

3.
Southern African Journal of Infectious Diseases ; 36(1), 2021.
Article in English | EMBASE | ID: covidwho-1348731

ABSTRACT

Background: Serology testing is an important ancillary diagnostic to the reverse transcriptase polymerase chain reaction (RT-PCR) test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We aimed to evaluate the performance of the Roche Elecsys™ chemiluminescent immunoassay (Rotkreuz, Switzerland), that detects antibodies against the SARS-CoV-2 nucleocapsid antigen, at an academic laboratory in South Africa. Methods: Serum samples were collected from 312 donors with confirmed positive SARS-CoV-2 RT-PCR tests, with approval from a large university’s human research ethics committee. Negative controls included samples stored prior to December 2019 and from patients who tested negative for SARS-CoV-2 on RT-PCR and were confirmed negative using multiple serology methods (n = 124). Samples were stored at –80 °C and analysed on a Roche cobas™ 602 autoanalyser. Results: Compared with RT-PCR, our evaluation revealed a specificity of 100% and overall sensitivity of 65.1%. The sensitivity in individuals > 14 days’ post-diagnosis was 72.6%, with the highest sensitivity 31–50 days’ post-diagnosis at 88.6%. Results were also compared with in-house serology tests that showed high agreement in majority of categories. Conclusions: The sensitivity at all-time points post-diagnosis was lower than reported in other studies, but sensitivity in appropriate cohorts approached 90% with a high specificity. The lower sensitivity at earlier time points or in individuals without symptomatology may indicate failure to produce antibodies, which was further supported by the comparison against in-house serology tests.

4.
Viruses ; 13(5):28, 2021.
Article in English | MEDLINE | ID: covidwho-1208416

ABSTRACT

The COVID-19 pandemic has affected all individuals across the globe in some way. Despite large numbers of reported seroprevalence studies, there remains a limited understanding of how the magnitude and epitope utilization of the humoral immune response to SARS-CoV-2 viral anti-gens varies within populations following natural infection. Here, we designed a quantitative, multi-epitope protein microarray comprising various nucleocapsid protein structural motifs, including two structural domains and three intrinsically disordered regions. Quantitative data from the microarray provided complete differentiation between cases and pre-pandemic controls (100% sensitivity and specificity) in a case-control cohort (n = 100). We then assessed the influence of disease severity, age, and ethnicity on the strength and breadth of the humoral response in a multi-ethnic cohort (n = 138). As expected, patients with severe disease showed significantly higher antibody titers and interestingly also had significantly broader epitope coverage. A significant increase in antibody titer and epitope coverage was observed with increasing age, in both mild and severe disease, which is promising for vaccine efficacy in older individuals. Additionally, we observed significant differences in the breadth and strength of the humoral immune response in relation to ethnicity, which may reflect differences in genetic and lifestyle factors. Furthermore, our data enabled localization of the immuno-dominant epitope to the C-terminal structural domain of the viral nucleocapsid protein in two independent cohorts. Overall, we have designed, validated, and tested an advanced serological assay that enables accurate quantitation of the humoral response post natural infection and that has revealed unexpected differences in the magnitude and epitope utilization within a population.

5.
Adv Exp Med Biol ; 1321: 173-180, 2021.
Article in English | MEDLINE | ID: covidwho-1114246

ABSTRACT

The COVID-19 pandemic, caused by the SARS-C0V-2 virus, was initially considered and managed in a similar manner to the previous SARS epidemic as they are both caused by coronaviruses. What has now become apparent is that a major cause of morbidity and mortality in COVID-19 is abnormal thrombosis. This thrombosis occurs on a macro- and microvascular level and is unique to this disease. The virus has been demonstrated in the endothelium of the pulmonary alveoli and as such is thought to contribute to the devastating respiratory complications encountered. D-dimer concentrations are frequently raised in COVID to levels not frequently seen previously. The optimal anticoagulation treatment in COVID remains to be determined, and the myriad of pathophysiologic effects caused by this virus in the human host have also yet to be fully elucidated.


Subject(s)
COVID-19 , Coronavirus , Hemostatics , Humans , Pandemics , SARS-CoV-2
6.
Adv Exp Med Biol ; 1321: 163-172, 2021.
Article in English | MEDLINE | ID: covidwho-1114245

ABSTRACT

From its early origins, COVID-19 has spread extensively and was declared a global pandemic by the World Health Organization in March of 2020. Although initially thought to be predominantly a respiratory infection, more recent evidence points to a multisystem systemic disease which is associated with numerous haematological and immunological disturbances in addition to its other effects. Here we review the current knowledge on the haematological effects of COVID-19.


Subject(s)
COVID-19 , Respiratory Tract Infections , Humans , Pandemics , SARS-CoV-2
7.
Adv Exp Med Biol ; 1321: 127-138, 2021.
Article in English | MEDLINE | ID: covidwho-1114242

ABSTRACT

The SARS-CoV-2 virus which causes COVID-19 disease was initially described in the Hubei Province of China and has since spread to more than 200 countries and territories of the world. Severe cases of the disease are characterised by release of high levels of pro-inflammatory cytokines and other inflammatory mediators in a process characterised as a cytokine storm. These inflammatory mediators are associated with pathological leukocyte activation states with tissue damage. Here, we review these effects with a focus on their potential use in diagnosis, patient stratification and prognosis, as well as new drug targets.


Subject(s)
COVID-19 , SARS-CoV-2 , China , Cytokine Release Syndrome , Cytokines , Humans , Inflammation
8.
S Afr Med J ; 110(9): 842-845, 2020 07 17.
Article in English | MEDLINE | ID: covidwho-743542

ABSTRACT

Antibody tests for the novel coronavirus, SARS-CoV2, have been developed both as rapid diagnostic assays and for high-throughput formal serology platforms. Although these tests may be a useful adjunct to a diagnostic strategy, they have a number of limitations. Because of the antibody and viral dynamics of the coronavirus, their sensitivity can be variable, especially at early time points after symptom onset. Additional data are required on the performance of the tests in the South African population, especially with regard to development and persistence of antibody responses and whether antibodies are protective against reinfection. These tests may, however, be useful in guiding the public health response, providing data for research (including seroprevalence surveys and vaccine initiatives) and development of therapeutic strategies.


Subject(s)
Betacoronavirus , Clinical Laboratory Techniques , Coronavirus Infections , Immunologic Tests/methods , Pandemics , Pneumonia, Viral , Serologic Tests/methods , Betacoronavirus/genetics , Betacoronavirus/immunology , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/methods , Clinical Laboratory Techniques/standards , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Humans , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Reproducibility of Results , SARS-CoV-2 , Sensitivity and Specificity , Seroepidemiologic Studies , South Africa/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL