Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Vaccines (Basel) ; 10(4)2022 Apr 12.
Article in English | MEDLINE | ID: covidwho-1786100

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has prompted rapid investigation and deployment of vaccine platforms never before used to combat human disease. The severe impact on the health system and the high economic cost of non-pharmaceutical interventions, such as lockdowns and international border closures employed to mitigate the spread of COVID-19 prior to the arrival of effective vaccines, have led to calls for development and deployment of novel vaccine technologies as part of a "100-day response ambition" for the next pandemic. Prior to COVID-19, all of the pandemics (excluding HIV) in the past century have been due to influenza viruses, and influenza remains one of the most likely future pandemic threats along with new coronaviruses. New and emerging vaccine platforms are likely to play an important role in combatting the next pandemic. However, the existing well-established, proven platforms for seasonal and pandemic influenza manufacturing will also continue to be utilized to rapidly address the next influenza threat. The field of influenza vaccine manufacturing has a long history of successes, including approval of vaccines within approximately 100 days after WHO declaration of the A(H1N1) 2009 influenza pandemic. Moreover, many advances in vaccine science and manufacturing capabilities have been made in the past decade to optimize a rapid and timely response should a new influenza pandemic threat emerge.

2.
J Virol ; 96(3): e0192821, 2022 02 09.
Article in English | MEDLINE | ID: covidwho-1691422

ABSTRACT

From 2014 to week 07/2020 the Centre for Health Protection in Hong Kong conducted screening for influenza C virus (ICV). A retrospective analysis of ICV detections to week 26/2019 revealed persistent low-level circulation with outbreaks occurring biennially in the winters of 2015 to 2016 and 2017 to 2018 (R. S. Daniels et al., J Virol 94:e01051-20, 2020, https://doi.org/10.1128/JVI.01051-20). Here, we report on an outbreak occurring in 2019 to 2020, reinforcing the observation of biennial seasonality in Hong Kong. All three outbreaks occurred in similar time frames, were subsequently dwarfed by seasonal epidemics of influenza types A and B, and were caused by similar proportions of C/Kanagawa/1/76 (K)-lineage and C/São Paulo/378/82 S1- and S2-sublineage viruses. Ongoing genetic drift was observed in all genes, with some evidence of amino acid substitution in the hemagglutinin-esterase-fusion (HEF) glycoprotein possibly associated with antigenic drift. A total of 61 ICV genomes covering the three outbreaks were analyzed for reassortment, and 9 different reassortant constellations were identified, 1 K-lineage, 4 S1-sublineage, and 4 S2-sublineage, with 6 of these being identified first in the 2019-1920 outbreak (2 S2-lineage and 4 S1-lineage). The roles that virus interference/enhancement, ICV persistent infection, genome evolution, and reassortment might play in the observed seasonality of ICV in Hong Kong are discussed. IMPORTANCE Influenza C virus (ICV) infection of humans is common, with the great majority of people being infected during childhood, though reinfection can occur throughout life. While infection normally results in "cold-like" symptoms, severe disease cases have been reported in recent years. However, knowledge of ICV is limited due to poor systematic surveillance and an inability to propagate the virus in large amounts in the laboratory. Following recent systematic surveillance in Hong Kong SAR, China, and direct ICV gene sequencing from clinical specimens, a 2-year cycle of disease outbreaks (epidemics) has been identified, with gene mixing playing a significant role in ICV evolution. Studies like those reported here are key to developing an understanding of the impact of influenza C virus infection in humans, notably where comorbidities exist and severe respiratory disease can develop.


Subject(s)
Disease Outbreaks , Influenza, Human/epidemiology , Influenza, Human/virology , Influenzavirus C/classification , Influenzavirus C/genetics , Reassortant Viruses , Hemagglutinins, Viral/chemistry , Hemagglutinins, Viral/genetics , Hong Kong/epidemiology , Humans , Models, Molecular , Mutation , Phylogeny , Public Health Surveillance , Sequence Analysis, DNA , Structure-Activity Relationship , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/genetics
5.
Influenza Other Respir Viruses ; 15(6): 707-710, 2021 11.
Article in English | MEDLINE | ID: covidwho-1341261

ABSTRACT

We describe a Sanger sequencing protocol for SARS-CoV-2 S-gene the Spike (S)-glycoprotein product of which, composed of receptor-binding (S1) and membrane fusion (S2) segments, is the target of vaccines used to combat COVID-19. The protocol can be used in laboratories with basic Sanger sequencing capabilities and allows rapid "at source" screening for SARS-CoV-2 variants, notably those of concern. The protocol has been applied for surveillance, with clinical specimens collected in either nucleic acid preservation lysis-mix or virus transport medium, and research involving cultured viruses, and can yield data of public health importance in a timely manner.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Sequence Analysis , Spike Glycoprotein, Coronavirus/genetics
6.
Elife ; 102021 07 29.
Article in English | MEDLINE | ID: covidwho-1332333

ABSTRACT

Background: The degree of heterotypic immunity induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains is a major determinant of the spread of emerging variants and the success of vaccination campaigns, but remains incompletely understood. Methods: We examined the immunogenicity of SARS-CoV-2 variant B.1.1.7 (Alpha) that arose in the United Kingdom and spread globally. We determined titres of spike glycoprotein-binding antibodies and authentic virus neutralising antibodies induced by B.1.1.7 infection to infer homotypic and heterotypic immunity. Results: Antibodies elicited by B.1.1.7 infection exhibited significantly reduced recognition and neutralisation of parental strains or of the South Africa variant B.1.351 (Beta) than of the infecting variant. The drop in cross-reactivity was significantly more pronounced following B.1.1.7 than parental strain infection. Conclusions: The results indicate that heterotypic immunity induced by SARS-CoV-2 variants is asymmetric. Funding: This work was supported by the Francis Crick Institute and the Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , COVID-19/epidemiology , Cross Reactions , Humans , Parents , South Africa/epidemiology , Spike Glycoprotein, Coronavirus , United Kingdom/epidemiology
7.
PLoS Pathog ; 17(2): e1009352, 2021 02.
Article in English | MEDLINE | ID: covidwho-1105835

ABSTRACT

Serological and plasmablast responses and plasmablast-derived IgG monoclonal antibodies (MAbs) have been analysed in three COVID-19 patients with different clinical severities. Potent humoral responses were detected within 3 weeks of onset of illness in all patients and the serological titre was elicited soon after or concomitantly with peripheral plasmablast response. An average of 13.7% and 3.5% of plasmablast-derived MAbs were reactive with virus spike glycoprotein or nucleocapsid, respectively. A subset of anti-spike (10 of 32) antibodies cross-reacted with other betacoronaviruses tested and harboured extensive somatic mutations, indicative of an expansion of memory B cells upon SARS-CoV-2 infection. Fourteen of 32 anti-spike MAbs, including five anti-receptor-binding domain (RBD), three anti-non-RBD S1 and six anti-S2, neutralised wild-type SARS-CoV-2 in independent assays. Anti-RBD MAbs were further grouped into four cross-inhibiting clusters, of which six antibodies from three separate clusters blocked the binding of RBD to ACE2 and five were neutralising. All ACE2-blocking anti-RBD antibodies were isolated from two recovered patients with prolonged fever, which is compatible with substantial ACE2-blocking response in their sera. Finally, the identification of non-competing pairs of neutralising antibodies would offer potential templates for the development of prophylactic and therapeutic agents against SARS-CoV-2.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/genetics , Antibody-Producing Cells/immunology , Binding Sites , Epitopes , Humans , Immunoglobulin G/immunology , Nucleocapsid/immunology , Spike Glycoprotein, Coronavirus/immunology
8.
Nat Commun ; 12(1): 542, 2021 01 22.
Article in English | MEDLINE | ID: covidwho-1044339

ABSTRACT

There is need for effective and affordable vaccines against SARS-CoV-2 to tackle the ongoing pandemic. In this study, we describe a protein nanoparticle vaccine against SARS-CoV-2. The vaccine is based on the display of coronavirus spike glycoprotein receptor-binding domain (RBD) on a synthetic virus-like particle (VLP) platform, SpyCatcher003-mi3, using SpyTag/SpyCatcher technology. Low doses of RBD-SpyVLP in a prime-boost regimen induce a strong neutralising antibody response in mice and pigs that is superior to convalescent human sera. We evaluate antibody quality using ACE2 blocking and neutralisation of cell infection by pseudovirus or wild-type SARS-CoV-2. Using competition assays with a monoclonal antibody panel, we show that RBD-SpyVLP induces a polyclonal antibody response that recognises key epitopes on the RBD, reducing the likelihood of selecting neutralisation-escape mutants. Moreover, RBD-SpyVLP is thermostable and can be lyophilised without losing immunogenicity, to facilitate global distribution and reduce cold-chain dependence. The data suggests that RBD-SpyVLP provides strong potential to address clinical and logistic challenges of the COVID-19 pandemic.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Peptides/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Blocking/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , COVID-19/immunology , Cell Line , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Protein Interaction Domains and Motifs , Protein Multimerization , Swine
SELECTION OF CITATIONS
SEARCH DETAIL