Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Sci Transl Med ; 14(655): eabn3715, 2022 Jul 27.
Article in English | MEDLINE | ID: covidwho-1962064

ABSTRACT

Several variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged during the current coronavirus disease 2019 (COVID-19) pandemic. Although antibody cross-reactivity with the spike glycoproteins (S) of diverse coronaviruses, including endemic common cold coronaviruses (HCoVs), has been documented, it remains unclear whether such antibody responses, typically targeting the conserved S2 subunit, contribute to protection when induced by infection or through vaccination. Using a mouse model, we found that prior HCoV-OC43 S-targeted immunity primes neutralizing antibody responses to otherwise subimmunogenic SARS-CoV-2 S exposure and promotes S2-targeting antibody responses. Moreover, vaccination with SARS-CoV-2 S2 elicited antibodies in mice that neutralized diverse animal and human alphacoronaviruses and betacoronaviruses in vitro and provided a degree of protection against SARS-CoV-2 challenge in vivo. Last, in mice with a history of SARS-CoV-2 Wuhan-based S vaccination, further S2 vaccination induced broader neutralizing antibody response than booster Wuhan S vaccination, suggesting that it may prevent repertoire focusing caused by repeated homologous vaccination. These data establish the protective value of an S2-targeting vaccine and support the notion that S2 vaccination may better prepare the immune system to respond to the changing nature of the S1 subunit in SARS-CoV-2 variants of concern, as well as to future coronavirus zoonoses.


Subject(s)
COVID-19 Vaccines , COVID-19 , Coronavirus OC43, Human , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Coronavirus OC43, Human/immunology , Humans , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , Vaccination
2.
Vaccines (Basel) ; 10(4)2022 Apr 12.
Article in English | MEDLINE | ID: covidwho-1786100

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has prompted rapid investigation and deployment of vaccine platforms never before used to combat human disease. The severe impact on the health system and the high economic cost of non-pharmaceutical interventions, such as lockdowns and international border closures employed to mitigate the spread of COVID-19 prior to the arrival of effective vaccines, have led to calls for development and deployment of novel vaccine technologies as part of a "100-day response ambition" for the next pandemic. Prior to COVID-19, all of the pandemics (excluding HIV) in the past century have been due to influenza viruses, and influenza remains one of the most likely future pandemic threats along with new coronaviruses. New and emerging vaccine platforms are likely to play an important role in combatting the next pandemic. However, the existing well-established, proven platforms for seasonal and pandemic influenza manufacturing will also continue to be utilized to rapidly address the next influenza threat. The field of influenza vaccine manufacturing has a long history of successes, including approval of vaccines within approximately 100 days after WHO declaration of the A(H1N1) 2009 influenza pandemic. Moreover, many advances in vaccine science and manufacturing capabilities have been made in the past decade to optimize a rapid and timely response should a new influenza pandemic threat emerge.

3.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-331452

ABSTRACT

Surface antigens of pathogens are commonly targeted by vaccine-elicited antibodies but antigenic variability, notably in RNA viruses such as influenza, HIV and SARS-CoV-2, pose challenges for control by vaccination. For example, influenza A(H3N2) entered the human population in 1968 causing a pandemic and has since been monitored, along with other seasonal influenza viruses, for the emergence of antigenic drift variants through intensive global surveillance and laboratory characterisation. Statistical models of the relationship between genetic differences among viruses and their antigenic similarity provide useful information to inform vaccine development though accurate identification of causative mutations is complicated by highly correlated genetic signals that arise due to the evolutionary process. Here, using a sparse hierarchical Bayesian analogue of an experimentally validated model for integrating genetic and antigenic data, we identify the genetic changes in influenza A(H3N2) virus that underpin antigenic drift. We show that incorporating protein structural data into variable selection helps resolve ambiguities arising due to correlated signals, with the proportion of variables representing haemagglutinin positions decisively included, or excluded, increased from 59.8% to 72.4%. The accuracy of variable selection judged by proximity to experimentally determined antigenic sites was improved simultaneously. Structure-guided variable selection thus improves confidence in the identification of genetic explanations of antigenic variation and we also show that prioritising the identification of causative mutations is not detrimental to the predictive capability of the analysis. Indeed, incorporating structural information into variable selection resulted in a model that could more accurately predict antigenic assay titres for phenotypically-uncharactrised virus from genetic sequence. Combined, these analyses have the potential to inform choices of reference viruses, the targeting of laboratory assays, and predictions of the evolutionary success of different genotypes, and can therefore be used to inform vaccine selection processes.

4.
J Virol ; 96(3): e0192821, 2022 02 09.
Article in English | MEDLINE | ID: covidwho-1691422

ABSTRACT

From 2014 to week 07/2020 the Centre for Health Protection in Hong Kong conducted screening for influenza C virus (ICV). A retrospective analysis of ICV detections to week 26/2019 revealed persistent low-level circulation with outbreaks occurring biennially in the winters of 2015 to 2016 and 2017 to 2018 (R. S. Daniels et al., J Virol 94:e01051-20, 2020, https://doi.org/10.1128/JVI.01051-20). Here, we report on an outbreak occurring in 2019 to 2020, reinforcing the observation of biennial seasonality in Hong Kong. All three outbreaks occurred in similar time frames, were subsequently dwarfed by seasonal epidemics of influenza types A and B, and were caused by similar proportions of C/Kanagawa/1/76 (K)-lineage and C/São Paulo/378/82 S1- and S2-sublineage viruses. Ongoing genetic drift was observed in all genes, with some evidence of amino acid substitution in the hemagglutinin-esterase-fusion (HEF) glycoprotein possibly associated with antigenic drift. A total of 61 ICV genomes covering the three outbreaks were analyzed for reassortment, and 9 different reassortant constellations were identified, 1 K-lineage, 4 S1-sublineage, and 4 S2-sublineage, with 6 of these being identified first in the 2019-1920 outbreak (2 S2-lineage and 4 S1-lineage). The roles that virus interference/enhancement, ICV persistent infection, genome evolution, and reassortment might play in the observed seasonality of ICV in Hong Kong are discussed. IMPORTANCE Influenza C virus (ICV) infection of humans is common, with the great majority of people being infected during childhood, though reinfection can occur throughout life. While infection normally results in "cold-like" symptoms, severe disease cases have been reported in recent years. However, knowledge of ICV is limited due to poor systematic surveillance and an inability to propagate the virus in large amounts in the laboratory. Following recent systematic surveillance in Hong Kong SAR, China, and direct ICV gene sequencing from clinical specimens, a 2-year cycle of disease outbreaks (epidemics) has been identified, with gene mixing playing a significant role in ICV evolution. Studies like those reported here are key to developing an understanding of the impact of influenza C virus infection in humans, notably where comorbidities exist and severe respiratory disease can develop.


Subject(s)
Disease Outbreaks , Influenza, Human/epidemiology , Influenza, Human/virology , Influenzavirus C/classification , Influenzavirus C/genetics , Reassortant Viruses , Hemagglutinins, Viral/chemistry , Hemagglutinins, Viral/genetics , Hong Kong/epidemiology , Humans , Models, Molecular , Mutation , Phylogeny , Public Health Surveillance , Sequence Analysis, DNA , Structure-Activity Relationship , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/genetics
7.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-293390

ABSTRACT

Several common-cold coronaviruses (HCoVs) are endemic in humans and several variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged during the current Coronavirus disease 2019 (COVID-19) pandemic. Whilst antibody cross-reactivity with the Spike glycoproteins (S) of diverse coronaviruses has been documented, it remains unclear whether such antibody responses, typically targeting the conserved S2 subunit, contribute to or mediate protection, when induced naturally or through vaccination. Using a mouse model, we show that prior HCoV-OC43 S immunity primes neutralising antibody responses to otherwise subimmunogenic SARS-CoV-2 S exposure and promotes S2-targeting antibody responses. Moreover, mouse vaccination with SARS-CoV-2 S2 elicits antibodies that neutralise diverse animal and human alphacoronaviruses and betacoronaviruses in vitro, and protects against SARS-CoV-2 challenge in vivo. Lastly, in mice with a history of SARS-CoV-2 Wuhan-based S vaccination, further S2 vaccination induces stronger and broader neutralising antibody response than booster Wuhan S vaccination, suggesting it may prevent repertoire focusing caused by repeated homologous vaccination. The data presented here establish the protective value of an S2-targeting vaccine and support the notion that S2 vaccination may better prepare the immune system to respond to the changing nature of the S1 subunit in SARS-CoV-2 variants of concern (VOCs), as well as to unpredictable, yet inevitable future coronavirus zoonoses.

8.
Influenza Other Respir Viruses ; 16(1): 3-6, 2022 01.
Article in English | MEDLINE | ID: covidwho-1450557

ABSTRACT

The COVID-19 pandemic and the measures taken to mitigate its spread have had a dramatic effect on the circulation patterns of other respiratory viruses, most especially influenza viruses. Since April 2020, the global circulation of influenza has been markedly reduced; however, it is still present in a number of different countries and could pose a renewed threat in the upcoming Northern Hemisphere winter. Influenza vaccination remains the most effective preventive measure that we have at our disposal against influenza infections and should not be ignored for the 2021-2022 season.


Subject(s)
COVID-19 , Influenza, Human , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pandemics/prevention & control , SARS-CoV-2 , Vaccination
9.
Med (N Y) ; 2(9): 1093-1109.e6, 2021 09 10.
Article in English | MEDLINE | ID: covidwho-1404795

ABSTRACT

BACKGROUND: Differences in humoral immunity to coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), between children and adults remain unexplained, and the effect of underlying immune dysfunction or suppression is unknown. Here, we sought to examine the antibody immune competence of children and adolescents with prevalent inflammatory rheumatic diseases, juvenile idiopathic arthritis (JIA), juvenile dermatomyositis (JDM), and juvenile systemic lupus erythematosus (JSLE) against the seasonal human coronavirus (HCoV)-OC43 that frequently infects this age group. METHODS: Sera were collected from JIA (n = 118), JDM (n = 49), and JSLE (n = 30) patients and from healthy control (n = 54) children and adolescents prior to the coronavirus disease 19 (COVID-19) pandemic. We used sensitive flow-cytometry-based assays to determine titers of antibodies that reacted with the spike and nucleoprotein of HCoV-OC43 and cross-reacted with the spike and nucleoprotein of SARS-CoV-2, and we compared them with respective titers in sera from patients with multisystem inflammatory syndrome in children and adolescents (MIS-C). FINDINGS: Despite immune dysfunction and immunosuppressive treatment, JIA, JDM, and JSLE patients maintained comparable or stronger humoral responses than healthier peers, which was dominated by immunoglobulin G (IgG) antibodies to HCoV-OC43 spike, and harbored IgG antibodies that cross-reacted with SARS-CoV-2 spike. In contrast, responses to HCoV-OC43 and SARS-CoV-2 nucleoproteins exhibited delayed age-dependent class-switching and were not elevated in JIA, JDM, and JSLE patients, which argues against increased exposure. CONCLUSIONS: Consequently, autoimmune rheumatic diseases and their treatment were associated with a favorable ratio of spike to nucleoprotein antibodies. FUNDING: This work was supported by a Centre of Excellence Centre for Adolescent Rheumatology Versus Arthritis grant, 21593, UKRI funding reference MR/R013926/1, the Great Ormond Street Children's Charity, Cure JM Foundation, Myositis UK, Lupus UK, and the NIHR Biomedical Research Centres at GOSH and UCLH. This work was supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK, the UK Medical Research Council, and the Wellcome Trust.


Subject(s)
Autoimmune Diseases , COVID-19 , Coronavirus OC43, Human , Rheumatic Diseases , Adolescent , Adult , Antibodies, Viral , Antibody Formation , COVID-19/complications , Child , Humans , Immunoglobulin G , Nucleoproteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Systemic Inflammatory Response Syndrome
10.
Influenza Other Respir Viruses ; 15(6): 707-710, 2021 11.
Article in English | MEDLINE | ID: covidwho-1341261

ABSTRACT

We describe a Sanger sequencing protocol for SARS-CoV-2 S-gene the Spike (S)-glycoprotein product of which, composed of receptor-binding (S1) and membrane fusion (S2) segments, is the target of vaccines used to combat COVID-19. The protocol can be used in laboratories with basic Sanger sequencing capabilities and allows rapid "at source" screening for SARS-CoV-2 variants, notably those of concern. The protocol has been applied for surveillance, with clinical specimens collected in either nucleic acid preservation lysis-mix or virus transport medium, and research involving cultured viruses, and can yield data of public health importance in a timely manner.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Sequence Analysis , Spike Glycoprotein, Coronavirus/genetics
11.
Elife ; 102021 07 29.
Article in English | MEDLINE | ID: covidwho-1332333

ABSTRACT

Background: The degree of heterotypic immunity induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains is a major determinant of the spread of emerging variants and the success of vaccination campaigns, but remains incompletely understood. Methods: We examined the immunogenicity of SARS-CoV-2 variant B.1.1.7 (Alpha) that arose in the United Kingdom and spread globally. We determined titres of spike glycoprotein-binding antibodies and authentic virus neutralising antibodies induced by B.1.1.7 infection to infer homotypic and heterotypic immunity. Results: Antibodies elicited by B.1.1.7 infection exhibited significantly reduced recognition and neutralisation of parental strains or of the South Africa variant B.1.351 (Beta) than of the infecting variant. The drop in cross-reactivity was significantly more pronounced following B.1.1.7 than parental strain infection. Conclusions: The results indicate that heterotypic immunity induced by SARS-CoV-2 variants is asymmetric. Funding: This work was supported by the Francis Crick Institute and the Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , COVID-19/epidemiology , Cross Reactions , Humans , Parents , South Africa/epidemiology , Spike Glycoprotein, Coronavirus , United Kingdom/epidemiology
12.
Biochem J ; 478(13): 2405-2423, 2021 07 16.
Article in English | MEDLINE | ID: covidwho-1292181

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global public health challenge. While the efficacy of vaccines against emerging and future virus variants remains unclear, there is a need for therapeutics. Repurposing existing drugs represents a promising and potentially rapid opportunity to find novel antivirals against SARS-CoV-2. The virus encodes at least nine enzymatic activities that are potential drug targets. Here, we have expressed, purified and developed enzymatic assays for SARS-CoV-2 nsp13 helicase, a viral replication protein that is essential for the coronavirus life cycle. We screened a custom chemical library of over 5000 previously characterized pharmaceuticals for nsp13 inhibitors using a fluorescence resonance energy transfer-based high-throughput screening approach. From this, we have identified FPA-124 and several suramin-related compounds as novel inhibitors of nsp13 helicase activity in vitro. We describe the efficacy of these drugs using assays we developed to monitor SARS-CoV-2 growth in Vero E6 cells.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Drug Evaluation, Preclinical , RNA Helicases/antagonists & inhibitors , SARS-CoV-2/enzymology , Small Molecule Libraries/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Chlorocebus aethiops , Enzyme Assays , Fluorescence Resonance Energy Transfer , High-Throughput Screening Assays , RNA Helicases/metabolism , Reproducibility of Results , SARS-CoV-2/drug effects , Small Molecule Libraries/chemistry , Suramin/pharmacology , Vero Cells , Viral Nonstructural Proteins/metabolism
13.
PLoS Pathog ; 17(2): e1009352, 2021 02.
Article in English | MEDLINE | ID: covidwho-1105835

ABSTRACT

Serological and plasmablast responses and plasmablast-derived IgG monoclonal antibodies (MAbs) have been analysed in three COVID-19 patients with different clinical severities. Potent humoral responses were detected within 3 weeks of onset of illness in all patients and the serological titre was elicited soon after or concomitantly with peripheral plasmablast response. An average of 13.7% and 3.5% of plasmablast-derived MAbs were reactive with virus spike glycoprotein or nucleocapsid, respectively. A subset of anti-spike (10 of 32) antibodies cross-reacted with other betacoronaviruses tested and harboured extensive somatic mutations, indicative of an expansion of memory B cells upon SARS-CoV-2 infection. Fourteen of 32 anti-spike MAbs, including five anti-receptor-binding domain (RBD), three anti-non-RBD S1 and six anti-S2, neutralised wild-type SARS-CoV-2 in independent assays. Anti-RBD MAbs were further grouped into four cross-inhibiting clusters, of which six antibodies from three separate clusters blocked the binding of RBD to ACE2 and five were neutralising. All ACE2-blocking anti-RBD antibodies were isolated from two recovered patients with prolonged fever, which is compatible with substantial ACE2-blocking response in their sera. Finally, the identification of non-competing pairs of neutralising antibodies would offer potential templates for the development of prophylactic and therapeutic agents against SARS-CoV-2.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/genetics , Antibody-Producing Cells/immunology , Binding Sites , Epitopes , Humans , Immunoglobulin G/immunology , Nucleocapsid/immunology , Spike Glycoprotein, Coronavirus/immunology
14.
Nat Commun ; 12(1): 542, 2021 01 22.
Article in English | MEDLINE | ID: covidwho-1044339

ABSTRACT

There is need for effective and affordable vaccines against SARS-CoV-2 to tackle the ongoing pandemic. In this study, we describe a protein nanoparticle vaccine against SARS-CoV-2. The vaccine is based on the display of coronavirus spike glycoprotein receptor-binding domain (RBD) on a synthetic virus-like particle (VLP) platform, SpyCatcher003-mi3, using SpyTag/SpyCatcher technology. Low doses of RBD-SpyVLP in a prime-boost regimen induce a strong neutralising antibody response in mice and pigs that is superior to convalescent human sera. We evaluate antibody quality using ACE2 blocking and neutralisation of cell infection by pseudovirus or wild-type SARS-CoV-2. Using competition assays with a monoclonal antibody panel, we show that RBD-SpyVLP induces a polyclonal antibody response that recognises key epitopes on the RBD, reducing the likelihood of selecting neutralisation-escape mutants. Moreover, RBD-SpyVLP is thermostable and can be lyophilised without losing immunogenicity, to facilitate global distribution and reduce cold-chain dependence. The data suggests that RBD-SpyVLP provides strong potential to address clinical and logistic challenges of the COVID-19 pandemic.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Peptides/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Blocking/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , COVID-19/immunology , Cell Line , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Protein Interaction Domains and Motifs , Protein Multimerization , Swine
15.
Science ; 370(6522): 1339-1343, 2020 12 11.
Article in English | MEDLINE | ID: covidwho-913669

ABSTRACT

Zoonotic introduction of novel coronaviruses may encounter preexisting immunity in humans. Using diverse assays for antibodies recognizing SARS-CoV-2 proteins, we detected preexisting humoral immunity. SARS-CoV-2 spike glycoprotein (S)-reactive antibodies were detectable using a flow cytometry-based method in SARS-CoV-2-uninfected individuals and were particularly prevalent in children and adolescents. They were predominantly of the immunoglobulin G (IgG) class and targeted the S2 subunit. By contrast, SARS-CoV-2 infection induced higher titers of SARS-CoV-2 S-reactive IgG antibodies targeting both the S1 and S2 subunits, and concomitant IgM and IgA antibodies, lasting throughout the observation period. SARS-CoV-2-uninfected donor sera exhibited specific neutralizing activity against SARS-CoV-2 and SARS-CoV-2 S pseudotypes. Distinguishing preexisting and de novo immunity will be critical for our understanding of susceptibility to and the natural course of SARS-CoV-2 infection.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Immunity, Humoral , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Aged, 80 and over , Amino Acid Sequence , Animals , COVID-19/blood , Epitope Mapping , Female , HEK293 Cells , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Viral Zoonoses/blood , Viral Zoonoses/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL