Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Nat Commun ; 13(1): 6124, 2022 Oct 17.
Article in English | MEDLINE | ID: covidwho-2077055

ABSTRACT

Data on the safety of COVID-19 vaccines in early pregnancy are limited. We conducted a national, population-based, matched cohort study assessing associations between COVID-19 vaccination and miscarriage prior to 20 weeks gestation and, separately, ectopic pregnancy. We identified women in Scotland vaccinated between 6 weeks preconception and 19 weeks 6 days gestation (for miscarriage; n = 18,780) or 2 weeks 6 days gestation (for ectopic; n = 10,570). Matched, unvaccinated women from the pre-pandemic and, separately, pandemic periods were used as controls. Here we show no association between vaccination and miscarriage (adjusted Odds Ratio [aOR], pre-pandemic controls = 1.02, 95% Confidence Interval [CI] = 0.96-1.09) or ectopic pregnancy (aOR = 1.13, 95% CI = 0.92-1.38). We undertook additional analyses examining confirmed SARS-CoV-2 infection as the exposure and similarly found no association with miscarriage or ectopic pregnancy. Our findings support current recommendations that vaccination remains the safest way for pregnant women to protect themselves and their babies from COVID-19.


Subject(s)
Abortion, Spontaneous , COVID-19 Vaccines , COVID-19 , Influenza, Human , Pregnancy, Ectopic , Female , Humans , Pregnancy , Abortion, Spontaneous/epidemiology , Cohort Studies , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Influenza, Human/prevention & control , Pregnancy Outcome , SARS-CoV-2 , Vaccination
2.
Lancet ; 400(10360): 1305-1320, 2022 10 15.
Article in English | MEDLINE | ID: covidwho-2069811

ABSTRACT

BACKGROUND: Current UK vaccination policy is to offer future COVID-19 booster doses to individuals at high risk of serious illness from COVID-19, but it is still uncertain which groups of the population could benefit most. In response to an urgent request from the UK Joint Committee on Vaccination and Immunisation, we aimed to identify risk factors for severe COVID-19 outcomes (ie, COVID-19-related hospitalisation or death) in individuals who had completed their primary COVID-19 vaccination schedule and had received the first booster vaccine. METHODS: We constructed prospective cohorts across all four UK nations through linkages of primary care, RT-PCR testing, vaccination, hospitalisation, and mortality data on 30 million people. We included individuals who received primary vaccine doses of BNT162b2 (tozinameran; Pfizer-BioNTech) or ChAdOx1 nCoV-19 (Oxford-AstraZeneca) vaccines in our initial analyses. We then restricted analyses to those given a BNT162b2 or mRNA-1273 (elasomeran; Moderna) booster and had a severe COVID-19 outcome between Dec 20, 2021, and Feb 28, 2022 (when the omicron (B.1.1.529) variant was dominant). We fitted time-dependent Poisson regression models and calculated adjusted rate ratios (aRRs) and 95% CIs for the associations between risk factors and COVID-19-related hospitalisation or death. We adjusted for a range of potential covariates, including age, sex, comorbidities, and previous SARS-CoV-2 infection. Stratified analyses were conducted by vaccine type. We then did pooled analyses across UK nations using fixed-effect meta-analyses. FINDINGS: Between Dec 8, 2020, and Feb 28, 2022, 16 208 600 individuals completed their primary vaccine schedule and 13 836 390 individuals received a booster dose. Between Dec 20, 2021, and Feb 28, 2022, 59 510 (0·4%) of the primary vaccine group and 26 100 (0·2%) of those who received their booster had severe COVID-19 outcomes. The risk of severe COVID-19 outcomes reduced after receiving the booster (rate change: 8·8 events per 1000 person-years to 7·6 events per 1000 person-years). Older adults (≥80 years vs 18-49 years; aRR 3·60 [95% CI 3·45-3·75]), those with comorbidities (≥5 comorbidities vs none; 9·51 [9·07-9·97]), being male (male vs female; 1·23 [1·20-1·26]), and those with certain underlying health conditions-in particular, individuals receiving immunosuppressants (yes vs no; 5·80 [5·53-6·09])-and those with chronic kidney disease (stage 5 vs no; 3·71 [2·90-4·74]) remained at high risk despite the initial booster. Individuals with a history of COVID-19 infection were at reduced risk (infected ≥9 months before booster dose vs no previous infection; aRR 0·41 [95% CI 0·29-0·58]). INTERPRETATION: Older people, those with multimorbidity, and those with specific underlying health conditions remain at increased risk of COVID-19 hospitalisation and death after the initial vaccine booster and should, therefore, be prioritised for additional boosters, including novel optimised versions, and the increasing array of COVID-19 therapeutics. FUNDING: National Core Studies-Immunity, UK Research and Innovation (Medical Research Council), Health Data Research UK, the Scottish Government, and the University of Edinburgh.


Subject(s)
COVID-19 , Aged , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , England/epidemiology , Female , Humans , Immunization, Secondary , Immunosuppressive Agents , Male , Northern Ireland , Prospective Studies , SARS-CoV-2 , Scotland , Vaccination , Wales/epidemiology
3.
Sci Rep ; 12(1): 16406, 2022 09 30.
Article in English | MEDLINE | ID: covidwho-2050525

ABSTRACT

There is a need for better understanding of the risk of thrombocytopenic, haemorrhagic, thromboembolic disorders following first, second and booster vaccination doses and testing positive for SARS-CoV-2. Self-controlled cases series analysis of 2.1 million linked patient records in Wales between 7th December 2020 and 31st December 2021. Outcomes were the first diagnosis of thrombocytopenic, haemorrhagic and thromboembolic events in primary or secondary care datasets, exposure was defined as 0-28 days post-vaccination or a positive reverse transcription polymerase chain reaction test for SARS-CoV-2. 36,136 individuals experienced either a thrombocytopenic, haemorrhagic or thromboembolic event during the study period. Relative to baseline, our observations show greater risk of outcomes in the periods post-first dose of BNT162b2 for haemorrhagic (IRR 1.47, 95%CI: 1.04-2.08) and idiopathic thrombocytopenic purpura (IRR 2.80, 95%CI: 1.21-6.49) events; post-second dose of ChAdOx1 for arterial thrombosis (IRR 1.14, 95%CI: 1.01-1.29); post-booster greater risk of venous thromboembolic (VTE) (IRR-Moderna 3.62, 95%CI: 0.99-13.17) (IRR-BNT162b2 1.39, 95%CI: 1.04-1.87) and arterial thrombosis (IRR-Moderna 3.14, 95%CI: 1.14-8.64) (IRR-BNT162b2 1.34, 95%CI: 1.15-1.58). Similarly, post SARS-CoV-2 infection the risk was increased for haemorrhagic (IRR 1.49, 95%CI: 1.15-1.92), VTE (IRR 5.63, 95%CI: 4.91, 6.4), arterial thrombosis (IRR 2.46, 95%CI: 2.22-2.71). We found that there was a measurable risk of thrombocytopenic, haemorrhagic, thromboembolic events after COVID-19 vaccination and infection.


Subject(s)
COVID-19 Vaccines , COVID-19 , Thrombocytopenia , Venous Thromboembolism , BNT162 Vaccine , COVID-19/complications , COVID-19/epidemiology , COVID-19 Vaccines/adverse effects , Hemorrhage , Humans , SARS-CoV-2 , Thrombocytopenia/chemically induced , Thrombocytopenia/epidemiology , Vaccination/adverse effects , Venous Thromboembolism/chemically induced , Wales/epidemiology
4.
J Glob Health ; 12: 05044, 2022 Sep 23.
Article in English | MEDLINE | ID: covidwho-2040350

ABSTRACT

Background: There is considerable policy, clinical and public interest about whether children should be vaccinated against SARS-CoV-2 and, if so, which children should be prioritised (particularly if vaccine resources are limited). To inform such deliberations, we sought to identify children and young people at highest risk of hospitalization from COVID-19. Methods: We used the Early Pandemic Evaluation and Enhanced Surveillance of COVID-19 (EAVE II) platform to undertake a national incident cohort analysis to investigate the risk of hospitalization among 5-17 years old living in Scotland in risk groups defined by the living risk prediction algorithm (QCOVID). A Cox proportional hazard model was used to derive hazard ratios (HR) and 95% confidence intervals (CIs) for the association between risk groups and COVID-19 hospital admission. Adjustments were made for age, sex, socioeconomic status, co-morbidity, and prior hospitalization. Results: Between March 1, 2020 and November 22, 2021, there were 146 183 (19.4% of all 752 867 children in Scotland) polymerase chain reaction (PCR) confirmed SARS-CoV-2 infections among 5-17 years old. Of those with confirmed infection, 973 (0.7%) were admitted to hospital with COVID-19. The rate of COVID-19 hospitalization was higher in those within each QCOVID risk group compared to those without the condition. Similar results were found in age stratified analyses (5-11 and 12-17 years old). Risk groups associated with an increased risk of COVID-19 hospital admission, included (adjusted HR, 95% CIs): sickle cell disease 14.35 (8.48-24.28), chronic kidney disease 11.34 (4.61-27.87), blood cancer 6.32 (3.24-12.35), rare pulmonary diseases 5.04 (2.58-9.86), type 2 diabetes 3.04 (1.34-6.92), epilepsy 2.54 (1.69-3.81), type 1 diabetes 2.48 (1.47-4.16), Down syndrome 2.45 (0.96-6.25), cerebral palsy 2.37 (1.26-4.47), severe mental illness 1.43 (0.63-3.24), fracture 1.41 (1.02-1.95), congenital heart disease 1.35 (0.82-2.23), asthma 1.28 (1.06-1.55), and learning disability (excluding Down syndrome) 1.08 (0.82-1.42), when compared to those without these conditions. Although our Cox models were adjusted for a number of potential confounders, residual confounding remains a possibility. Conclusions: In this national study, we observed an increased risk of COVID-19 hospital admissions among school-aged children with specific underlying long-term health conditions compared with children without these conditions.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Down Syndrome , Adolescent , COVID-19/epidemiology , Child , Child, Preschool , Cohort Studies , Hospitalization , Humans , SARS-CoV-2 , Scotland/epidemiology
5.
Nat Commun ; 13(1): 4800, 2022 08 15.
Article in English | MEDLINE | ID: covidwho-1991587

ABSTRACT

We investigated thrombocytopenic, thromboembolic and hemorrhagic events following a second dose of ChAdOx1 and BNT162b2 using a self-controlled case series analysis. We used a national prospective cohort with 2.0 million(m) adults vaccinated with two doses of ChAdOx or 1.6 m with BNT162b2. The incidence rate ratio (IRR) for idiopathic thrombocytopenic purpura (ITP) 14-20 days post-ChAdOx1 second dose was 2.14, 95% confidence interval (CI) 0.90-5.08. The incidence of ITP post-second dose ChAdOx1 was 0.59 (0.37-0.89) per 100,000 doses. No evidence of an increased risk of CVST was found for the 0-27 day risk period (IRR 0.83, 95% CI 0.16 to 4.26). However, few (≤5) events arose within this risk period. It is perhaps noteworthy that these events all clustered in the 7-13 day period (IRR 4.06, 95% CI 0.94 to 17.51). No other associations were found for second dose ChAdOx1, or any association for second dose BNT162b2 vaccination. Second dose ChAdOx1 vaccination was associated with increased borderline risks of ITP and CVST events. However, these events were rare thus providing reassurance about the safety of these vaccines. Further analyses including more cases are required to determine more precisely the risk profile for ITP and CVST after a second dose of ChAdOx1 vaccine.


Subject(s)
BNT162 Vaccine , COVID-19 , ChAdOx1 nCoV-19 , Purpura, Thrombocytopenic, Idiopathic , Thromboembolism , Adult , BNT162 Vaccine/adverse effects , COVID-19/epidemiology , COVID-19/prevention & control , ChAdOx1 nCoV-19/adverse effects , Humans , Prospective Studies , Purpura, Thrombocytopenic, Idiopathic/chemically induced , Purpura, Thrombocytopenic, Idiopathic/epidemiology , Scotland , Thromboembolism/chemically induced , Thromboembolism/epidemiology , Vaccination/adverse effects
6.
BMJ Open ; 12(2): e050062, 2022 02 14.
Article in English | MEDLINE | ID: covidwho-1685581

ABSTRACT

INTRODUCTION: The novel coronavirus SARS-CoV-2, which emerged in December 2019, has caused millions of deaths and severe illness worldwide. Numerous vaccines are currently under development of which a few have now been authorised for population-level administration by several countries. As of 20 September 2021, over 48 million people have received their first vaccine dose and over 44 million people have received their second vaccine dose across the UK. We aim to assess the uptake rates, effectiveness, and safety of all currently approved COVID-19 vaccines in the UK. METHODS AND ANALYSIS: We will use prospective cohort study designs to assess vaccine uptake, effectiveness and safety against clinical outcomes and deaths. Test-negative case-control study design will be used to assess vaccine effectiveness (VE) against laboratory confirmed SARS-CoV-2 infection. Self-controlled case series and retrospective cohort study designs will be carried out to assess vaccine safety against mild-to-moderate and severe adverse events, respectively. Individual-level pseudonymised data from primary care, secondary care, laboratory test and death records will be linked and analysed in secure research environments in each UK nation. Univariate and multivariate logistic regression models will be carried out to estimate vaccine uptake levels in relation to various population characteristics. VE estimates against laboratory confirmed SARS-CoV-2 infection will be generated using a generalised additive logistic model. Time-dependent Cox models will be used to estimate the VE against clinical outcomes and deaths. The safety of the vaccines will be assessed using logistic regression models with an offset for the length of the risk period. Where possible, data will be meta-analysed across the UK nations. ETHICS AND DISSEMINATION: We obtained approvals from the National Research Ethics Service Committee, Southeast Scotland 02 (12/SS/0201), the Secure Anonymised Information Linkage independent Information Governance Review Panel project number 0911. Concerning English data, University of Oxford is compliant with the General Data Protection Regulation and the National Health Service (NHS) Digital Data Security and Protection Policy. This is an approved study (Integrated Research Application ID 301740, Health Research Authority (HRA) Research Ethics Committee 21/HRA/2786). The Oxford-Royal College of General Practitioners Clinical Informatics Digital Hub meets NHS Digital's Data Security and Protection Toolkit requirements. In Northern Ireland, the project was approved by the Honest Broker Governance Board, project number 0064. Findings will be made available to national policy-makers, presented at conferences and published in peer-reviewed journals.


Subject(s)
COVID-19 Vaccines , COVID-19 , Case-Control Studies , Humans , Observational Studies as Topic , Prospective Studies , Retrospective Studies , SARS-CoV-2 , Scotland/epidemiology , State Medicine
SELECTION OF CITATIONS
SEARCH DETAIL