Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Add filters

Year range
Non-conventional | WHO COVID | ID: covidwho-665969


Severe Acute Respiratory Syndrome Coronavirus -2 (SARS-CoV-2) emerged in late 2019 and has spread worldwide resulting in the Coronavirus Disease 2019 (COVID-19) pandemic Although animal models have been evaluated for SARS-CoV-2 infection, none have recapitulated the severe lung disease phenotypes seen in hospitalized human cases Here, we evaluate heterozygous transgenic mice expressing the human ACE2 receptor driven by the epithelial cell cytokeratin-18 gene promoter (K18-hACE2) as a model of SARS-CoV-2 infection Intranasal inoculation of SARS-CoV-2 in K18-hACE2 mice results in high levels of viral infection in lung tissues with additional spread to other organs Remarkably, a decline in pulmonary function, as measured by static and dynamic tests of respiratory capacity, occurs 4 days after peak viral titer and correlates with an inflammatory response marked by infiltration into the lung of monocytes, neutrophils, and activated T cells resulting in pneumonia Cytokine profiling and RNA sequencing analysis of SARS-CoV-2-infected lung tissues show a massively upregulated innate immune response with prominent signatures of NF-kB-dependent, type I and II interferon signaling, and leukocyte activation pathways Thus, the K18-hACE2 model of SARS-CoV-2 infection recapitulates many features of severe COVID-19 infection in humans and can be used to define the mechanistic basis of lung disease and test immune and antiviral-based countermeasures

Non-conventional | WHO COVID | ID: covidwho-663086


Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of human infections and hundreds of thousands of deaths Accordingly, an effective vaccine is of critical importance in mitigating coronavirus induced disease 2019 (COVID-19) and curtailing the pandemic We developed a replication-competent vesicular stomatitis virus (VSV)-based vaccine by introducing a modified form of the SARS-CoV-2 spike gene in place of the native glycoprotein gene (VSV-eGFP-SARS-CoV-2) Immunization of mice with VSV-eGFP-SARS-CoV-2 elicits high titers of antibodies that neutralize SARS-CoV-2 infection and target the receptor binding domain that engages human angiotensin converting enzyme-2 (ACE2) Upon challenge with a human isolate of SARS-CoV-2, mice expressing human ACE2 and immunized with VSV-eGFP-SARS-CoV-2 show profoundly reduced viral infection and inflammation in the lung indicating protection against pneumonia Finally, passive transfer of sera from VSV-eGFP-SARS-CoV-2-immunized animals protects naive mice from SARS-CoV-2 challenge These data support development of VSV-eGFP-SARS-CoV-2 as an attenuated, replication-competent vaccine against SARS-CoV-2

Nature ; 2020 Jul 15.
Article in English | MEDLINE | ID: covidwho-647154


The ongoing pandemic of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major threat to global health1 and the medical countermeasures available so far are limited2,3. Moreover, we currently lack a thorough understanding of the mechanisms of humoral immunity to SARS-CoV-24. Here we analyse a large panel of human monoclonal antibodies that target the spike (S) glycoprotein5, and identify several that exhibit potent neutralizing activity and fully block the receptor-binding domain of the S protein (SRBD) from interacting with human angiotensin-converting enzyme 2 (ACE2). Using competition-binding, structural and functional studies, we show that the monoclonal antibodies can be clustered into classes that recognize distinct epitopes on the SRBD, as well as distinct conformational states of the S trimer. Two potently neutralizing monoclonal antibodies, COV2-2196 and COV2-2130, which recognize non-overlapping sites, bound simultaneously to the S protein and neutralized wild-type SARS-CoV-2 virus in a synergistic manner. In two mouse models of SARS-CoV-2 infection, passive transfer of COV2-2196, COV2-2130 or a combination of both of these antibodies protected mice from weight loss and reduced the viral burden and levels of inflammation in the lungs. In addition, passive transfer of either of two of the most potent ACE2-blocking monoclonal antibodies (COV2-2196 or COV2-2381) as monotherapy protected rhesus macaques from SARS-CoV-2 infection. These results identify protective epitopes on the SRBD and provide a structure-based framework for rational vaccine design and the selection of robust immunotherapeutic agents.

Cell ; 2020 Jun 10.
Article in English | MEDLINE | ID: covidwho-592074


Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic with millions of human infections. One limitation to the evaluation of potential therapies and vaccines to inhibit SARS-CoV-2 infection and ameliorate disease is the lack of susceptible small animals in large numbers. Commercially available laboratory strains of mice are not readily infected by SARS-CoV-2 because of species-specific differences in their angiotensin-converting enzyme 2 (ACE2) receptors. Here, we transduced replication-defective adenoviruses encoding human ACE2 via intranasal administration into BALB/c mice and established receptor expression in lung tissues. hACE2-transduced mice were productively infected with SARS-CoV-2, and this resulted in high viral titers in the lung, lung pathology, and weight loss. Passive transfer of a neutralizing monoclonal antibody reduced viral burden in the lung and mitigated inflammation and weight loss. The development of an accessible mouse model of SARS-CoV-2 infection and pathogenesis will expedite the testing and deployment of therapeutics and vaccines.

Sci Immunol ; 5(47)2020 05 13.
Article in English | MEDLINE | ID: covidwho-260039


Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA are frequently observed in COVID-19 patients. However, it is unclear whether SARS-CoV-2 replicates in the human intestine and contributes to possible fecal-oral transmission. Here, we report productive infection of SARS-CoV-2 in ACE2+ mature enterocytes in human small intestinal enteroids. Expression of two mucosa-specific serine proteases, TMPRSS2 and TMPRSS4, facilitated SARS-CoV-2 spike fusogenic activity and promoted virus entry into host cells. We also demonstrate that viruses released into the intestinal lumen were inactivated by simulated human colonic fluid, and infectious virus was not recovered from the stool specimens of COVID-19 patients. Our results highlight the intestine as a potential site of SARS-CoV-2 replication, which may contribute to local and systemic illness and overall disease progression.

Betacoronavirus/physiology , Enterocytes/virology , Membrane Proteins/metabolism , Serine Endopeptidases/metabolism , Virus Internalization , Animals , Cell Line , Duodenum/cytology , Enterocytes/pathology , Humans , Mice , Organoids/virology , Peptidyl-Dipeptidase A/metabolism , Rotavirus/physiology , Vesiculovirus/genetics