Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
BMC Res Notes ; 14(1): 20, 2021 Jan 09.
Article in English | MEDLINE | ID: covidwho-1388819

ABSTRACT

OBJECTIVE: We aimed to characterize the effects of prone positioning on respiratory mechanics and oxygenation in invasively ventilated patients with SARS-CoV-2 ARDS. RESULTS: This was a prospective cohort study in the Intensive Care Unit (ICU) of a tertiary referral centre. We included 20 consecutive, invasively ventilated patients with laboratory confirmed SARS-CoV-2 related ARDS who underwent prone positioning in ICU as part of their management. The main outcome was the effect of prone positioning on gas exchange and respiratory mechanics. There was a median improvement in the PaO2/FiO2 ratio of 132 in the prone position compared to the supine position (IQR 67-228). We observed lower PaO2/FiO2 ratios in those with low (< median) baseline respiratory system static compliance, compared to those with higher (> median) static compliance (P < 0.05). There was no significant difference in respiratory system static compliance with prone positioning. Prone positioning was effective in improving oxygenation in SARS-CoV-2 ARDS. Furthermore, poor respiratory system static compliance was common and was associated with disease severity. Improvements in oxygenation were partly due to lung recruitment. Prone positioning should be considered in patients with SARS-CoV-2 ARDS.


Subject(s)
COVID-19/therapy , Lung/metabolism , Prone Position , COVID-19/metabolism , Cohort Studies , Humans , Male , Middle Aged , Oxygen/metabolism , Prospective Studies , Respiration, Artificial
2.
PLoS One ; 16(8): e0256226, 2021.
Article in English | MEDLINE | ID: covidwho-1374147

ABSTRACT

Coronavirus disease (COVID)-19, as a result of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, has been the direct cause of over 2.2 million deaths worldwide. A timely coordinated host-immune response represents the leading driver for restraining SARS-CoV-2 infection. Indeed, several studies have described dysregulated immunity as the crucial determinant for critical illness and the failure of viral control. Improved understanding and management of COVID-19 could greatly reduce the mortality and morbidity caused by SARS-CoV-2. One aspect of the immune response that has to date been understudied is whether lipid mediator production is dysregulated in critically ill patients. In the present study, plasma from COVID-19 patients with either severe disease and those that were critically ill was collected and lipid mediator profiles were determined using liquid chromatography tandem mass spectrometry. Results from these studies indicated that plasma concentrations of both pro-inflammatory and pro-resolving lipid mediator were reduced in critically ill patients when compared with those with severe disease. Furthermore, plasma concentrations of a select group of mediators that included the specialized pro-resolving mediators (SPM) Resolvin (Rv) D1 and RvE4 were diagnostic of disease severity. Interestingly, peripheral blood SPM concentrations were also linked with outcome in critically ill patients, where we observed reduced overall concentrations of these mediators in those patients that did not survive. Together the present findings establish a link between plasma lipid mediators and disease severity in patients with COVID-19 and indicate that plasma SPM concentrations may be linked with survival in these patients.


Subject(s)
COVID-19/diagnosis , Docosahexaenoic Acids/blood , SARS-CoV-2/isolation & purification , Adult , Aged , COVID-19/virology , Chromatography, High Pressure Liquid , Critical Illness , Female , Ferritins/blood , Fibrin Fibrinogen Degradation Products/analysis , Humans , Male , Middle Aged , Severity of Illness Index , Tandem Mass Spectrometry , Up-Regulation
3.
Lancet Respir Med ; 9(6): 643-654, 2021 06.
Article in English | MEDLINE | ID: covidwho-1291133

ABSTRACT

Circulating concentrations of the pleiotropic cytokine interleukin-6 (IL-6) are known to be increased in pro-inflammatory critical care syndromes, such as sepsis and acute respiratory distress syndrome. Elevations in serum IL-6 concentrations in patients with severe COVID-19 have led to renewed interest in the cytokine as a therapeutic target. However, although the pro-inflammatory properties of IL-6 are widely known, the cytokine also has a series of important physiological and anti-inflammatory functions. An adequate understanding of the complex processes by which IL-6 signalling occurs is crucial for the correct interpretation of IL-6 concentrations in the blood or lung, the use of IL-6 as a critical care biomarker, or the design of effective anti-IL-6 strategies. Here, we outline the role of IL-6 in health and disease, explain the different types of IL-6 signalling and their contribution to the net biological effect of the cytokine, describe the approaches to IL-6 inhibition that are currently available, and discuss implications for the future use of treatments such as tocilizumab in the critical care setting.


Subject(s)
Antibodies, Monoclonal, Humanized , COVID-19 , Interleukin-6 , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/pharmacology , Biomarkers/blood , COVID-19/immunology , COVID-19/physiopathology , COVID-19/therapy , Critical Illness , Humans , Immunologic Factors/immunology , Immunologic Factors/pharmacology , Interleukin-6/antagonists & inhibitors , Interleukin-6/blood , Interleukin-6/immunology , SARS-CoV-2
4.
Anesthesiology ; 134(5): 792-808, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-1202432

ABSTRACT

Acute respiratory distress syndrome is characterized by hypoxemia, altered alveolar-capillary permeability, and neutrophil-dominated inflammatory pulmonary edema. Despite decades of research, an effective drug therapy for acute respiratory distress syndrome remains elusive. The ideal pharmacotherapy for acute respiratory distress syndrome should demonstrate antiprotease activity and target injurious inflammatory pathways while maintaining host defense against infection. Furthermore, a drug with a reputable safety profile, low possibility of off-target effects, and well-known pharmacokinetics would be desirable. The endogenous 52-kd serine protease α1-antitrypsin has the potential to be a novel treatment option for acute respiratory distress syndrome. The main function of α1-antitrypsin is as an antiprotease, targeting neutrophil elastase in particular. However, studies have also highlighted the role of α1-antitrypsin in the modulation of inflammation and bacterial clearance. In light of the current SARS-CoV-2 pandemic, the identification of a treatment for acute respiratory distress syndrome is even more pertinent, and α1-antitrypsin has been implicated in the inflammatory response to SARS-CoV-2 infection.


Subject(s)
Neutrophils/drug effects , Proteinase Inhibitory Proteins, Secretory/administration & dosage , Respiratory Distress Syndrome/drug therapy , alpha 1-Antitrypsin/administration & dosage , Animals , COVID-19/drug therapy , COVID-19/enzymology , COVID-19/immunology , Humans , Immunologic Factors/administration & dosage , Immunologic Factors/immunology , Lung/drug effects , Lung/enzymology , Lung/immunology , Neutrophils/enzymology , Neutrophils/immunology , Proteinase Inhibitory Proteins, Secretory/immunology , Respiratory Distress Syndrome/enzymology , Respiratory Distress Syndrome/immunology , alpha 1-Antitrypsin/immunology
5.
Anesthesiology ; 134(5): 792-808, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-1135903

ABSTRACT

Acute respiratory distress syndrome is characterized by hypoxemia, altered alveolar-capillary permeability, and neutrophil-dominated inflammatory pulmonary edema. Despite decades of research, an effective drug therapy for acute respiratory distress syndrome remains elusive. The ideal pharmacotherapy for acute respiratory distress syndrome should demonstrate antiprotease activity and target injurious inflammatory pathways while maintaining host defense against infection. Furthermore, a drug with a reputable safety profile, low possibility of off-target effects, and well-known pharmacokinetics would be desirable. The endogenous 52-kd serine protease α1-antitrypsin has the potential to be a novel treatment option for acute respiratory distress syndrome. The main function of α1-antitrypsin is as an antiprotease, targeting neutrophil elastase in particular. However, studies have also highlighted the role of α1-antitrypsin in the modulation of inflammation and bacterial clearance. In light of the current SARS-CoV-2 pandemic, the identification of a treatment for acute respiratory distress syndrome is even more pertinent, and α1-antitrypsin has been implicated in the inflammatory response to SARS-CoV-2 infection.


Subject(s)
Neutrophils/drug effects , Proteinase Inhibitory Proteins, Secretory/administration & dosage , Respiratory Distress Syndrome/drug therapy , alpha 1-Antitrypsin/administration & dosage , Animals , COVID-19/drug therapy , COVID-19/enzymology , COVID-19/immunology , Humans , Immunologic Factors/administration & dosage , Immunologic Factors/immunology , Lung/drug effects , Lung/enzymology , Lung/immunology , Neutrophils/enzymology , Neutrophils/immunology , Proteinase Inhibitory Proteins, Secretory/immunology , Respiratory Distress Syndrome/enzymology , Respiratory Distress Syndrome/immunology , alpha 1-Antitrypsin/immunology
6.
J Cyst Fibros ; 20(1): 31-35, 2021 01.
Article in English | MEDLINE | ID: covidwho-1065291

ABSTRACT

BACKGROUND: The clinical course of severe COVID-19 in cystic fibrosis (CF) is incompletely understood. We describe the use of alpha-1 antitrypsin (AAT) as a salvage therapy in a critically unwell patient with CF (PWCF) who developed COVID-19 while awaiting lung transplantation. METHODS: IV AAT was administered at 120 mg/kg/week for 4 consecutive weeks. Levels of interleukin (IL)-1ß, IL-6, IL-8, and soluble TNF receptor 1 (sTNFR1) were assessed at regular intervals in plasma, with IL-1ß, IL-6, IL-8 and neutrophil elastase (NE) activity measured in airway secretions. Levels were compared to baseline and historic severe exacerbation measurements. RESULTS: Systemic and airway inflammatory markers were increased compared to both prior exacerbation and baseline levels, in particular IL-6, IL-1ß and NE activity. Following each AAT dose, rapid decreases in each inflammatory parameter were observed. These were matched by marked clinical and radiographic improvement. CONCLUSIONS: The results support further investigation of AAT as a COVID-19 therapeutic, and re-exploration of its use in CF.


Subject(s)
COVID-19/complications , Cystic Fibrosis/complications , Cystic Fibrosis/drug therapy , alpha 1-Antitrypsin/therapeutic use , Adult , Biomarkers/blood , COVID-19/diagnostic imaging , Cystic Fibrosis/diagnostic imaging , Female , Humans , Ireland , Respiratory Function Tests , SARS-CoV-2
7.
Am J Respir Crit Care Med ; 203(1): 141-142, 2021 01 01.
Article in English | MEDLINE | ID: covidwho-1066989

Subject(s)
COVID-19 , Humans , SARS-CoV-2
8.
Thorax ; 76(1): 86-88, 2021 01.
Article in English | MEDLINE | ID: covidwho-1066942

ABSTRACT

False negatives from nasopharyngeal swabs (NPS) using reverse transcriptase PCR (RT-PCR) in SARS-CoV-2 are high. Exhaled breath condensate (EBC) contains lower respiratory droplets that may improve detection. We performed EBC RT-PCR for SARS-CoV-2 genes (E, S, N, ORF1ab) on NPS-positive (n=16) and NPS-negative/clinically positive COVID-19 patients (n=15) using two commercial assays. EBC detected SARS-CoV-2 in 93.5% (29/31) using the four genes. Pre-SARS-CoV-2 era controls (n=14) were negative. EBC was positive in NPS negative/clinically positive patients in 66.6% (10/15) using the identical E and S (E/S) gene assay used for NPS, 73.3% (11/15) using the N/ORF1ab assay and 14/15 (93.3%) combined.


Subject(s)
Breath Tests/methods , COVID-19 Testing/methods , COVID-19/diagnosis , Exhalation , RNA, Viral/analysis , SARS-CoV-2/genetics , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , Female , Humans , Male , Middle Aged , Prospective Studies , Reproducibility of Results
10.
EBioMedicine ; 61: 103026, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-838033

ABSTRACT

BACKGROUND: Prognostic tools are required to guide clinical decision-making in COVID-19. METHODS: We studied the relationship between the ratio of interleukin (IL)-6 to IL-10 and clinical outcome in 80 patients hospitalized for COVID-19, and created a simple 5-point linear score predictor of clinical outcome, the Dublin-Boston score. Clinical outcome was analysed as a three-level ordinal variable ("Improved", "Unchanged", or "Declined"). For both IL-6:IL-10 ratio and IL-6 alone, we associated clinical outcome with a) baseline biomarker levels, b) change in biomarker level from day 0 to day 2, c) change in biomarker from day 0 to day 4, and d) slope of biomarker change throughout the study. The associations between ordinal clinical outcome and each of the different predictors were performed with proportional odds logistic regression. Associations were run both "unadjusted" and adjusted for age and sex. Nested cross-validation was used to identify the model for incorporation into the Dublin-Boston score. FINDINGS: The 4-day change in IL-6:IL-10 ratio was chosen to derive the Dublin-Boston score. Each 1 point increase in the score was associated with a 5.6 times increased odds for a more severe outcome (OR 5.62, 95% CI -3.22-9.81, P = 1.2 × 10-9). Both the Dublin-Boston score and the 4-day change in IL-6:IL-10 significantly outperformed IL-6 alone in predicting clinical outcome at day 7. INTERPRETATION: The Dublin-Boston score is easily calculated and can be applied to a spectrum of hospitalized COVID-19 patients. More informed prognosis could help determine when to escalate care, institute or remove mechanical ventilation, or drive considerations for therapies. FUNDING: Funding was received from the Elaine Galwey Research Fellowship, American Thoracic Society, National Institutes of Health and the Parker B Francis Research Opportunity Award.


Subject(s)
Coronavirus Infections/diagnosis , Interleukin-10/metabolism , Interleukin-6/metabolism , Pneumonia, Viral/diagnosis , Adult , Aged , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/virology , Female , Humans , Logistic Models , Male , Middle Aged , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Prognosis , SARS-CoV-2 , Time Factors
11.
Ir J Med Sci ; 190(2): 461-468, 2021 May.
Article in English | MEDLINE | ID: covidwho-746141

ABSTRACT

BACKGROUND: In January 2020, the WHO declared the SARS-CoV-2 outbreak a public health emergency; by March 11, a pandemic was declared. To date in Ireland, over 3300 patients have been admitted to acute hospitals as a result of infection with COVID-19. AIMS: This article aims to describe the establishment of a COVID Recovery Service, a multidisciplinary service for comprehensive follow-up of patients with a hospital diagnosis of COVID-19 pneumonia. METHODS: A hybrid model of virtual and in-person clinics was established, supported by a multidisciplinary team consisting of respiratory, critical care, infectious diseases, psychiatry, and psychology services. This model identifies patients who need enhanced follow-up following COVID-19 pneumonia and aims to support patients with complications of COVID-19 and those who require integrated community care. RESULTS: We describe a post-COVID-19 service structure together with detailed protocols for multidisciplinary follow-up. One hundred seventy-four patients were discharged from Beaumont Hospital after COVID-19 pneumonia. Sixty-seven percent were male with a median age (IQR) of 66.5 (51-97). Twenty-two percent were admitted to the ICU for mechanical ventilation, 11% had non-invasive ventilation or high flow oxygen, and 67% did not have specialist respiratory support. Early data suggests that 48% of these patients will require medium to long-term specialist follow-up. CONCLUSIONS: We demonstrate the implementation of an integrated multidisciplinary approach to patients with COVID-19, identifying those with increased physical and mental healthcare needs. Our initial experience suggests that significant physical, psychological, and cognitive impairments may persist despite clinical resolution of the infection.


Subject(s)
COVID-19/rehabilitation , Delivery of Health Care/methods , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , SARS-CoV-2/isolation & purification
12.
Am J Respir Crit Care Med ; 202(6): 812-821, 2020 09 15.
Article in English | MEDLINE | ID: covidwho-614625

ABSTRACT

Rationale: Coronavirus disease (COVID-19) is a global threat to health. Its inflammatory characteristics are incompletely understood.Objectives: To define the cytokine profile of COVID-19 and to identify evidence of immunometabolic alterations in those with severe illness.Methods: Levels of IL-1ß, IL-6, IL-8, IL-10, and sTNFR1 (soluble tumor necrosis factor receptor 1) were assessed in plasma from healthy volunteers, hospitalized but stable patients with COVID-19 (COVIDstable patients), patients with COVID-19 requiring ICU admission (COVIDICU patients), and patients with severe community-acquired pneumonia requiring ICU support (CAPICU patients). Immunometabolic markers were measured in circulating neutrophils from patients with severe COVID-19. The acute phase response of AAT (alpha-1 antitrypsin) to COVID-19 was also evaluated.Measurements and Main Results: IL-1ß, IL-6, IL-8, and sTNFR1 were all increased in patients with COVID-19. COVIDICU patients could be clearly differentiated from COVIDstable patients, and demonstrated higher levels of IL-1ß, IL-6, and sTNFR1 but lower IL-10 than CAPICU patients. COVID-19 neutrophils displayed altered immunometabolism, with increased cytosolic PKM2 (pyruvate kinase M2), phosphorylated PKM2, HIF-1α (hypoxia-inducible factor-1α), and lactate. The production and sialylation of AAT increased in COVID-19, but this antiinflammatory response was overwhelmed in severe illness, with the IL-6:AAT ratio markedly higher in patients requiring ICU admission (P < 0.0001). In critically unwell patients with COVID-19, increases in IL-6:AAT predicted prolonged ICU stay and mortality, whereas improvement in IL-6:AAT was associated with clinical resolution (P < 0.0001).Conclusions: The COVID-19 cytokinemia is distinct from that of other types of pneumonia, leading to organ failure and ICU need. Neutrophils undergo immunometabolic reprogramming in severe COVID-19 illness. Cytokine ratios may predict outcomes in this population.


Subject(s)
Acute-Phase Reaction/immunology , Carrier Proteins/metabolism , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Cytokines/immunology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lactic Acid/metabolism , Membrane Proteins/metabolism , Pneumonia, Viral/immunology , Pneumonia, Viral/metabolism , Thyroid Hormones/metabolism , alpha 1-Antitrypsin/immunology , Acute-Phase Reaction/metabolism , Adult , Aged , Betacoronavirus , Blotting, Western , COVID-19 , Case-Control Studies , Community-Acquired Infections/immunology , Community-Acquired Infections/metabolism , Coronavirus Infections/mortality , Coronavirus Infections/physiopathology , Critical Illness , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Female , Hospitalization , Humans , Intensive Care Units , Interleukin-10/immunology , Interleukin-1beta/immunology , Interleukin-6/immunology , Interleukin-8/immunology , Length of Stay , Male , Middle Aged , Neutrophils/immunology , Neutrophils/metabolism , Pandemics , Phosphorylation , Pneumonia/immunology , Pneumonia/metabolism , Pneumonia, Viral/mortality , Pneumonia, Viral/physiopathology , Receptors, Tumor Necrosis Factor, Type I/immunology , SARS-CoV-2 , Severity of Illness Index , alpha 1-Antitrypsin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...