Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Microbiol Spectr ; 9(2): e0079221, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1526452


A wastewater surveillance program targeting a university residence hall was implemented during the spring semester 2021 as a proactive measure to avoid an outbreak of COVID-19 on campus. Over a period of 7 weeks from early February through late March 2021, wastewater originating from the residence hall was collected as grab samples 3 times per week. During this time, there was no detection of SARS-CoV-2 by reverse transcriptase quantitative PCR (RT-qPCR) in the residence hall wastewater stream. Aiming to obtain a sample more representative of the residence hall community, a decision was made to use passive samplers beginning in late March onwards. Adopting a Moore swab approach, SARS-CoV-2 was detected in wastewater samples just 2 days after passive samplers were deployed. These samples also tested positive for the B.1.1.7 (Alpha) variant of concern (VOC) using RT-qPCR. The positive result triggered a public health case-finding response, including a mobile testing unit deployed to the residence hall the following day, with testing of nearly 200 students and staff, which identified two laboratory-confirmed cases of Alpha variant COVID-19. These individuals were relocated to a separate quarantine facility, averting an outbreak on campus. Aggregating wastewater and clinical data, the campus wastewater surveillance program has yielded the first estimates of fecal shedding rates of the Alpha VOC of SARS-CoV-2 in individuals from a nonclinical setting. IMPORTANCE Among early adopters of wastewater monitoring for SARS-CoV-2 have been colleges and universities throughout North America, many of whom are using this approach to monitor congregate living facilities for early evidence of COVID-19 infection as an integral component of campus screening programs. Yet, while there have been numerous examples where wastewater monitoring on a university campus has detected evidence for infection among community members, there are few examples where this monitoring triggered a public health response that may have averted an actual outbreak. This report details a wastewater-testing program targeting a residence hall on a university campus during spring 2021, when there was mounting concern globally over the emergence of SARS-CoV-2 variants of concern, reported to be more transmissible than the wild-type Wuhan strain. In this communication, we present a clear example of how wastewater monitoring resulted in actionable responses by university administration and public health, which averted an outbreak of COVID-19 on a university campus.

COVID-19/epidemiology , Disease Outbreaks , SARS-CoV-2/isolation & purification , Universities , Waste Water/virology , Wastewater-Based Epidemiological Monitoring , COVID-19/transmission , COVID-19/virology , Humans , Mass Screening , Ontario , Public Health , SARS-CoV-2/classification , SARS-CoV-2/genetics
Conserv Lett ; : e12800, 2021 Apr 06.
Article in English | MEDLINE | ID: covidwho-1171123


During the first wave of the COVID-19 pandemic, management authorities of numerous Protected Areas (PAs) had to discourage visitors from accessing them in order to reduce the virus transmission rate and protect local communities. This resulted in social-ecological impacts and added another layer of complexity to managing PAs. This paper presents the results of a survey in Snowdonia National Park capturing the views of over 700 local residents on the impacts of COVID-19 restrictions and possible scenarios and tools for managing tourist numbers. Lower visitor numbers were seen in a broadly positive way by a significant number of respondents while benefit sharing issues from tourism also emerged. Most preferred options to manage overcrowding were restricting access to certain paths, the development of mobile applications to alert people to overcrowding and reporting irresponsible behavior. Our findings are useful for PA managers and local communities currently developing post-COVID-19 recovery strategies.

Forests ; 11(11):1214, 2020.
Article in English | MDPI | ID: covidwho-934486


The COVID-19 pandemic led to many European countries imposing lockdown measures and limiting people’s movement during spring 2020. During the summer 2020, these strict lockdown measures were gradually lifted while in autumn 2020, local restrictions started to be re-introduced as a second wave emerged. After initial restrictions on visitors accessing many Nature Protected Areas (PAs) in Europe, management authorities have had to introduce measures so that all users can safely visit these protected landscapes. In this paper, we examine the challenges that emerged due to COVID-19 for PAs and their deeper causes. By considering the impact on and response of 14 popular European National and Nature Parks, we propose tentative longer-term solutions going beyond the current short-term measures that have been implemented. The most important challenges identified in our study were overcrowding, a new profile of visitors, problematic behavior, and conflicts between different user groups. A number of new measures have been introduced to tackle these challenges including information campaigns, traffic management, and establishing one-way systems on trail paths. However, measures to safeguard public health are often in conflict with other PA management measures aiming to minimize disturbance of wildlife and ecosystems. We highlight three areas in which management of PAs can learn from the experience of this pandemic: managing visitor numbers in order to avoid overcrowding through careful spatial planning, introducing educational campaigns, particularly targeting a new profile of visitors, and promoting sustainable tourism models, which do not rely on large visitor numbers.