Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Front Immunol ; 14: 941281, 2023.
Article in English | MEDLINE | ID: covidwho-2228948

ABSTRACT

SARS-CoV-2 continues to pose a threat to human health as new variants emerge and thus a diverse vaccine pipeline is needed. We evaluated SARS-CoV-2 HexaPro spike protein formulated in Alhydrogel® (aluminium oxyhydroxide) in Syrian hamsters, using an accelerated two dose regimen (given 10 days apart) and a standard regimen (two doses given 21 days apart). Both regimens elicited spike- and RBD-specific IgG antibody responses of similar magnitude, but in vitro virus neutralization was low or undetectable. Despite this, the accelerated two dose regimen offered reduction in viral load and protected against lung pathology upon challenge with homologous SARS-CoV-2 virus (Wuhan-Hu-1). This highlights that vaccine-induced protection against SARS-CoV-2 disease can be obtained despite low neutralizing antibody levels and suggests that accelerated vaccine schedules may be used to confer rapid protection against SARS-CoV-2 disease.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Humans , Aluminum Hydroxide , Mesocricetus , COVID-19/prevention & control , Vaccination , Antibodies, Neutralizing
2.
Sci Rep ; 11(1): 3125, 2021 02 04.
Article in English | MEDLINE | ID: covidwho-1065956

ABSTRACT

The outbreak of the SARS-CoV-2 virus and its rapid spread into a global pandemic made the urgent development of scalable vaccines to prevent coronavirus disease (COVID-19) a global health and economic imperative. Here, we characterized and compared the immunogenicity of two alphavirus-based DNA-launched self-replicating (DREP) vaccine candidates encoding either SARS-CoV-2 spike glycoprotein (DREP-S) or a spike ectodomain trimer stabilized in prefusion conformation (DREP-Secto). We observed that the two DREP constructs were immunogenic in mice inducing both binding and neutralizing antibodies as well as T cell responses. Interestingly, the DREP coding for the unmodified spike turned out to be more potent vaccine candidate, eliciting high titers of SARS-CoV-2 specific IgG antibodies that were able to efficiently neutralize pseudotyped virus after a single immunization. In addition, both DREP constructs were able to efficiently prime responses that could be boosted with a heterologous spike protein immunization. These data provide important novel insights into SARS-CoV-2 vaccine design using a rapid response DNA vaccine platform. Moreover, they encourage the use of mixed vaccine modalities as a strategy to combat SARS-CoV-2.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA/immunology , Animals , Female , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL
3.
EBioMedicine ; 63: 103197, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1014450

ABSTRACT

BACKGROUND: SARS-CoV-2 has caused a global pandemic, infecting millions of people. A safe, effective vaccine is urgently needed and remains a global health priority. Subunit vaccines are used successfully against other viruses when administered in the presence of an effective adjuvant. METHODS: We evaluated three different clinically tested adjuvant systems in combination with the SARS-CoV-2 pre-fusion stabilized (S-2P) spike protein using a one-dose regimen in mice. FINDINGS: Whilst spike protein alone was only weakly immunogenic, the addition of either Aluminum hydroxide, a squalene based oil-in-water emulsion system (SE) or a cationic liposome-based adjuvant significantly enhanced antibody responses against the spike receptor binding domain (RBD). Kinetics of antibody responses differed, with SE providing the most rapid response. Neutralizing antibodies developed after a single immunization in all adjuvanted groups with ID50 titers ranging from 86-4063. Spike-specific CD4 T helper responses were also elicited, comprising mainly of IFN-γ and IL-17 producing cells in the cationic liposome adjuvanted group, and more IL-5- and IL-10-secreting cells in the AH group. INTERPRETATION: These results demonstrate that adjuvanted spike protein subunit vaccine is a viable strategy for rapidly eliciting SARS-CoV-2 neutralizing antibodies and CD4 T cell responses of various qualities depending on the adjuvant used, which can be explored in further vaccine development against COVID-19. FUNDING: This work was supported by the European Union Horizon 2020 research and innovation program under grant agreement no. 101003653.


Subject(s)
Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , CD4-Positive T-Lymphocytes/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/chemistry , Aluminum Hydroxide/chemistry , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/metabolism , COVID-19/pathology , COVID-19/virology , Female , Immunization , Interferon-gamma/metabolism , Interleukin-17/metabolism , Liposomes/chemistry , Mice , Mice, Inbred C57BL , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Squalene/chemistry , Vaccines, Subunit/immunology
4.
Nat Commun ; 11(1): 5588, 2020 11 04.
Article in English | MEDLINE | ID: covidwho-910349

ABSTRACT

The coronavirus SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Therapeutic neutralizing antibodies constitute a key short-to-medium term approach to tackle COVID-19. However, traditional antibody production is hampered by long development times and costly production. Here, we report the rapid isolation and characterization of nanobodies from a synthetic library, known as sybodies (Sb), that target the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Several binders with low nanomolar affinities and efficient neutralization activity were identified of which Sb23 displayed high affinity and neutralized pseudovirus with an IC50 of 0.6 µg/ml. A cryo-EM structure of the spike bound to Sb23 showed that Sb23 binds competitively in the ACE2 binding site. Furthermore, the cryo-EM reconstruction revealed an unusual conformation of the spike where two RBDs are in the 'up' ACE2-binding conformation. The combined approach represents an alternative, fast workflow to select binders with neutralizing activity against newly emerging viruses.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/prevention & control , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2 , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 , Cryoelectron Microscopy , Humans , Neutralization Tests , Protein Binding , Protein Conformation , Protein Domains/immunology , Receptors, Virus/metabolism , SARS-CoV-2
5.
Nat Commun ; 11(1): 5064, 2020 10 08.
Article in English | MEDLINE | ID: covidwho-841875

ABSTRACT

SARS-CoV-2 may pose an occupational health risk to healthcare workers. Here, we report the seroprevalence of SARS-CoV-2 antibodies, self-reported symptoms and occupational exposure to SARS-CoV-2 among healthcare workers at a large acute care hospital in Sweden. The seroprevalence of IgG antibodies against SARS-CoV-2 was 19.1% among the 2149 healthcare workers recruited between April 14th and May 8th 2020, which was higher than the reported regional seroprevalence during the same time period. Symptoms associated with seroprevalence were anosmia (odds ratio (OR) 28.4, 95% CI 20.6-39.5) and ageusia (OR 19.2, 95% CI 14.3-26.1). Seroprevalence was also associated with patient contact (OR 2.9, 95% CI 1.9-4.5) and covid-19 patient contact (OR 3.3, 95% CI 2.2-5.3). These findings imply an occupational risk for SARS-CoV-2 infection among healthcare workers. Continued measures are warranted to assure healthcare workers safety and reduce transmission from healthcare workers to patients and to the community.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/etiology , Health Personnel/statistics & numerical data , Occupational Exposure/adverse effects , Pneumonia, Viral/epidemiology , Pneumonia, Viral/etiology , Adult , Antibodies, Viral/blood , Betacoronavirus/immunology , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/transmission , Cross-Sectional Studies , Female , Hospitals , Humans , Immunoglobulin G/blood , Infectious Disease Transmission, Patient-to-Professional , Male , Middle Aged , Occupational Exposure/statistics & numerical data , Occupational Health , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/transmission , SARS-CoV-2 , Seroepidemiologic Studies , Sweden/epidemiology
6.
Nat Commun ; 11(1): 4420, 2020 09 04.
Article in English | MEDLINE | ID: covidwho-744371

ABSTRACT

SARS-CoV-2 enters host cells through an interaction between the spike glycoprotein and the angiotensin converting enzyme 2 (ACE2) receptor. Directly preventing this interaction presents an attractive possibility for suppressing SARS-CoV-2 replication. Here, we report the isolation and characterization of an alpaca-derived single domain antibody fragment, Ty1, that specifically targets the receptor binding domain (RBD) of the SARS-CoV-2 spike, directly preventing ACE2 engagement. Ty1 binds the RBD with high affinity, occluding ACE2. A cryo-electron microscopy structure of the bound complex at 2.9 Å resolution reveals that Ty1 binds to an epitope on the RBD accessible in both the 'up' and 'down' conformations, sterically hindering RBD-ACE2 binding. While fusion to an Fc domain renders Ty1 extremely potent, Ty1 neutralizes SARS-CoV-2 spike pseudovirus as a 12.8 kDa nanobody, which can be expressed in high quantities in bacteria, presenting opportunities for manufacturing at scale. Ty1 is therefore an excellent candidate as an intervention against COVID-19.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/pharmacology , Betacoronavirus/drug effects , Camelids, New World/immunology , Coronavirus Infections/drug therapy , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/drug therapy , Single-Domain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Amino Acid Sequence , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Betacoronavirus/immunology , Betacoronavirus/metabolism , Binding Sites , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/virology , Cryoelectron Microscopy , Epitopes/immunology , Epitopes/metabolism , HEK293 Cells , Humans , Male , Models, Molecular , Pandemics , Peptidyl-Dipeptidase A/chemistry , Pneumonia, Viral/virology , Protein Binding , SARS-CoV-2 , Single-Domain Antibodies/immunology , Single-Domain Antibodies/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL